Molecular Hydrogen in Horticulture

Subjects: Agriculture, Dairy & Animal Science Contributor: Wenbiao Shen

Improvements in the growth, yield, and quality of horticultural crops require the development of simply integrated, cost-efficient, and eco-friendly solutions. Hydrogen gas (H2) has been observed to have fertilization effects on soils by influencing rhizospheric microorganisms, resulting in improvements in crop yield and quality. Ample studies have shown that H2 has positive effects on horticultural crops, such as promoting root development, enhancing tolerance against abiotic and biotic stress, prolonging storage life, and improving postharvest quality of fruits, vegetables and cut flowers.

1. Introduction

Horticultural crops are grown for food, medical use, and aesthetic enjoyment. They form an important part of agricultural production and contribute to food security as well as nutritional quality. The improvement in the growth, yield, and quality of horticultural crops has attracted widespread attention, especially for developing easy, cheap, and eco-friendly solutions, which is a challenge for a low-carbon society.

Hydrogen is the lightest and most abundant chemical element in the universe. Researchers have proposed that hydrogen gas (H₂) played a critical role in the origin of eukaryotes ^[1]. Meanwhile, the production and release of H₂ has been observed in algae, animals, and plants ^{[2][3][4]}. Thus, it is not surprising that H₂ has increasingly been attached to various biological functions in animals and plants, which have been observed during the last two decades of studies ^{[5][6][7]}.

Despite its low mixing ratio (~530 parts per billion by volume) in current Earth's atmosphere, H_2 contributes to the homeostasis of the oxidation state in the atmosphere ^[8]. In the context of H_2 biogeochemical cycles, the most important source of H_2 for the atmosphere is methane, while other sources are non-methane hydrocarbons and photochemical oxidation. Conversely, microbial-mediated soil uptake is responsible for ~80% of the tropospheric H_2 losses. H_2 has been shown to maintain microbial viability and activity and, in turn, driven carbon cycling ^[9]. Since H_2 exposed soil improved plant growth, it has been proposed that H_2 fertilization of soil can be attributed to H_2 -oxidizing bacteria in the rhizosphere ^[10]. Accordingly, the deliberate application of H_2 might have substantial potential in agricultural benefits.

In 2003, Dong et al. ^[10] observed that H₂-treated soil improved growth in canola (*Brassica napus*) and first proposed the "H₂ fertilization" hypothesis. Since then, a growing number of studies on the application of H₂ in horticulture have been carried out due to its unique properties in stimulating or sustaining plant growth and development, as well as postharvest preservation in particular (**Figure 1**). So far, there are a total of 62 publications on horticultural H₂ application from China (59), Australia (2), and Canada (1). In 2013, H₂ supplied by hydrogen-rich water (HRW) was observed to enhance plant tolerance with respect to herbicide (paraquat), drought, salinity, and cold stress in alfalfa seedlings ^[11]. Subsequently, many additional functions of H₂ have been discovered, such as promoting root development in cucumber (*Cucumis sativus*) ^[12] and tomato (*Lycopersicon esculentum*) ^[13] and alleviating heavy metal toxicity in pak choi (*Brassica rapa* var. *chinensis*) ^[14] and alfalfa (*Medicago sativa*) ^[15]. In addition, H₂ has been shown to improve the yield and quality of daylily (*Hemerocallis fulva* L.) ^[16], as well as prolonging the shelf life and vase life of fruits and flowers including kiwifruit (*Actinidia chinensis* var. *deliciosa*) ^[17], lychee (*Litchi chinensis*) ^[18], rose (*Rosa chinensis*) ^[19], and carnation (*Dianthus caryophyllus*) ^[20] (**Figure 2**). As the mechanism underlying the positive effects of H₂ on horticultural crops is progressively being revealed, the values of the application of H₂ in horticulture are being increasingly realized.

Figure 1. The developing profiles of the application of H₂ in horticulture.

Figure 2. The species of the publications studied on the application of H_2 in horticulture.

2. Possible Mechanisms Underlying H₂ Responses in Horticultural Crops

2.1. Involved in Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) Metabolism

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are commonly involved in plants responses to various stresses ^[21]. For example, chilling ^[22], osmatic ^{[23][24]}, paraquat stresses ^[11], and metal exposure ^{[25][26]} ^[27] can induce ROS (including superoxide anions (O_2^-), hydrogen peroxide (H_2O_2), hydroxyl radical (·OH), etc.) and RNS (nitric oxide (NO), peroxynitrite (ONOO⁻), etc.), disturbing the delicate redox homeostasis and causing cellular damage inside the plant cells. In postharvest fruits, vegetables, and cut flowers, ROS overproduction accelerated senescence process ^{[16][17][18][28][29]}. Additionally, ROS and RNS are vital signaling transducers in plant signaling networks for stress and development ^[30]. Therefore, the metabolic regulation of ROS and RNS is crucial for stress responses, growth, and development in plants.

Endogenous H₂ could be produced under abiotic stresses and senescence conditions in plants [11][31][32][29]. H₂ can increase the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and ascorbate peroxidase (APX) and the transcript levels of corresponding genes, thus resulting in scavenging overproduced ROS and reestablishing redox homeostasis in alfalfa seedlings subjected to osmotic stress [11][24] (**Table 1**).

Table 1. Role of H₂ involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism in horticultural crops.

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
Brassica rapa		1/4 Hoagland's nutrient solution with H ₂ (830 μM); the seedlings were pretreated for 48 h	~415 μM	Alleviates cadmium toxicity	Regulates NR- dependent NO signaling and enhances antioxidant capacity	[26]
var. chinensis 'Dongfang 2'	Preharvest	1/4 Hoagland solution with H ₂ (865 μM); the seedlings were pretreated for 2/3 d (replaced every 12 h)	865 µM	Reduces cadmium uptake in plant roots	Control of NADPH oxidase encoded by <i>RbohD</i> , which operates upstream of IRT1, and regulates root Cd uptake at both the transcriptional and functional levels	[33]
		HRW (220 μM); the seedlings		Enhances tolerance to paraquat	Modulates HO-1 signaling	[<u>11]</u>
Medicago sativa	Drohanvost	were pretreated for 12 h	μί	Alleviates aluminum toxicity	Decreases NO production	[<u>25]</u>
'Biaogan'	Fiendivest	HRW (780 μM); the		Induces	Regulates H ₂ O ₂ and HO-1 signaling	[<u>23]</u>
		seedlings were pretreated for 12 h	~390 μM	osmotic stress tolerance	NO-mediated proline accumulation and reestablishment of redox balance	[<u>24]</u>
<i>Cucumis sativus</i> 'Xinchun 4'	Preharvest	HRW (450 μM); the	~225 μM	Promotes adventitious rooting	Regulates CO signaling and	[<u>32]</u>

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
		seedlings were			activates antioxidant system	
		for 2/5 d (changed			Regulates NO signaling	[<u>34]</u> [<u>35]</u>
		uary)		Induces adventitious rooting under cadmium stress	Decreases oxidative damage, increases osmotic adjustment substance content, and regulates rooting- related enzyme activity	[<u>27</u>]
<i>Cucumis sativus</i> 'Jinyou 35'	Preharvest	HRW (450 μM); the seeds were soaked for 8 h	450 μΜ	Enhances cold tolerance	Enhances antioxidant capacity and slows dehydration rate by improving osmotic adjustment ability	[<u>22</u>]
Solanum lycopersicum 'Baiguoqiangfeng'	Preharvest	AB@hMSN (10 mg/L); the seedlings were incubated for 2/5 d	~400 μM	Induces lateral root formation	Modulates NR- dependent NO synthesis, cell cycle regulatory genes, and miRNAs expression	[<u>36</u>]
Hypsizygus marmoreus	Preharvest	HRW (1000 μM); the mycelia were cultivated until harvesting	~250 μM	Increases postharvest quality	Enhances antioxidant defense	[<u>37</u>]
Hemerocallis fulva 'Dawuzui'	Preharvest	HRW (1.6 μM); irrigation at the stages of bolting, growing and the day prior to the period of harvest	~0.8 μM	Promotes daylily bud yield and alleviation of bud browning	Decreases ROS level, increases the unsaturated:saturated fatty acid ratio, endogenous H ₂ and total phenol content, and reduces PAL and PPO activity	[<u>16]</u>

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
Actinidia chinesis 'Huayou'	Postharvest	HRW (660 μM); the fruits were soaked for 5 min	~528 μM	Delays postharvest ripening and senescence	Enhances antioxidant defense	[<u>17</u>]
<i>Litchi chinensis</i> 'Huaizhi'	Postharvest	HRW (500 μM); the fruits were soaked for 3 min	~350 µM	Delays the pericarp browning	Induces antioxidant system-related characters	[<u>18]</u>
Rosa chinensis 'Kardinal'; Lilium brownii 'Manissa'	Postharvest	HRW (450 μM); cut flowers were incubated for vase period (changed daily)	~225 μΜ (Rose); ~45 μΜ (Lily)	Improves the vase life and quality	Maintains water balance and membrane stability by reducing stomatal size and oxidative damage	[<u>19</u>]
Allium tuberosum	Postharvest	Gas; the leaves were fumigated for storage period (renewed daily)	~1.2×10 ³ μM	Prolongs the shelf life and maintain storage quality	Increases antioxidant capacity	[<u>28]</u>
<i>Dianthus</i> <i>caryophyllus</i> 'Pink Diamond'	Postharvest	HNW (~500 μM); cut flowers were incubated for 3 d (changed daily)	~50 μM	Prolongs the vase life	Reduces ROS accumulation and senescence- associated enzyme activities	[<u>38]</u>
Rosa chinensis 'Carola'	Postharvest	MgH ₂ (0.001 g/L); cut flowers were incubated for vase periods	Not shown	Prolongs the vase life	Maintains ROS balance by modulating NO synthesis	<u>[39]</u>

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.	-
		(changed daily)					
Lilium brownii 'Manissa'	Postharvest	HRW; cut fee were incubated for vase period (changed daily)	Not shown (1% saturation 13][44] HRW)	Prolongs the vase life	Regulates NO signaling and regulates the expression of the photosynthesis- related AtpA	[<u>40]</u>	it gro volve tases ng si sed a (GR)
Freesia refracta 'Red passion'	2 Postharve⁄st	HRW (75 μM); cut flowers wer <mark>4</mark> pretreated for 12 h	<u>43</u> ~0.75 μM	Prolongs the vase life	Improves antioxidant capacity	[<u>41</u>]	apaci Incoc Sultin
2		HRW (780 uM): cut					
Materials	Treatment Stage	H ₂ Deliver Methods ar Treatmen	y Effective nd Concentratio t of H ₂	n Functions of H ₂	of Mechanism	Ref. No.	
Brassica rapa var. chinensis 'Dongfang 2'	Preharvest	1/4 Hoagland's nutrient solution with H ₂ ; the seedlings were incubated for 48 h (replaced every 12 h) after removing cadmium stress	Not shown (50% saturation HRW)	Enhances cadmium tolerance	Reestablishes reduced GSH homeostasis	[<u>45]</u>	
Medicago sativa 'Victoria'	Preharvest	HRW (220 μM); the seedlings were pretreated	~22 μM	Alleviates cadmium toxicity	Reduces cadmium accumulation and reestablishes GSH homeostasis	[15]	
		for 12 h			Expression regulation of genes relevant to sulfur and	[<u>43</u>]	

Materials	Treatment Stage	H ₂ Delivery Methods and C Treatment	Effective oncentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
					glutathione metabolism, resulting in enhanced glutathione metabolism and activating antioxidant defense and cadmium chelation	
					Decreases oxidative damage, enhances sulfur compound metabolic process, and reestablishes nutrient element homeostasis	[44]
				Alleviates mercury toxicity	Reduces mercury accumulation and reestablishes redox homeostasis (GSH, AsA, and antioxidant enzymes)	[<u>46</u>]
Solanum lycopersicum 'Baiguoqiangfeng'	Preharvest	HRW (780 μM); the seedlings were incubated for 4 d (changed daily)	~390 µM	Influences lateral root branching	Promotes γ-ECS- dependent GSH production	[<u>47</u>]
Ganoderma lucidum strain HG	Preharvest	HRW (220 μM); added to the medium after 4 days of mycelium culture.	~11 µM	Regulates morphology, growth, and secondary metabolism	Increases glutathione peroxidase activity under HAc stress	<u>[48]</u>

2.3. Involvement in Flavonoids Metabolism

Materials	Treatmen Stage	H ₂ Delivery Methods an Treatment	d Concentration	Functions of H ₂	Mechanism	Ref. No.	radiation ed alfalfa
L Dianthus caryophyllus 'Pink Diamond'	Postharves	MgH ₂ (0.1 g/L MgH ₂ and 0.1 M PBS (pH 3.4); cut flowers were incubated for vase period	~400 µM	Prolongs the vase life	H ₂ S-mediated reestablishment of redox homeostasis and increased transcript levels of <i>DcbGal</i> and	[<u>49</u>]	lavanone, ∋d genes, , <i>flavonol</i>
Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H_2	Mechanism	Ref. No.	
Raphanus sativus 'Qingtou'; R. sativus 'Yanghua'	Preharvest	HRW (220 μ M); 1/4 Hoagland's nutrient solution with H ₂ (220 μ M H ₂); the seeds were soaked in HRW for 12 h; sprouts were incubated in nutrient solution with H ₂ for 3 d (replaced every 12 h) under UV-A	~220 μM	Regulates anthocyanin synthesis under UV-A	Reestablishes ROS homeostasis and regulates anthocyanin biosynthesis- related gene expression	[<u>52</u>]	
		HRW (781 μM); the seedlings were		Promotes the biosynthesis	Regulates InsP ₃ - dependent calcium signaling	[<u>53]</u>	
Raphanus. sativus 'Yanghua'		incubated for 48/60 h (replaced every 12 h) under UV-A	~781 μM	of anthocyanin under UV-A	Involved in phytohormones, MAPKs and Ca ²⁺ signaling	[<u>54</u>]	
	Preharvest	HRW (220 µM); the seedlings were incubated for 72 h (replaced every 12 h) under short wavelength light	~220 μM	Promotes anthocyanin accumulation under short wavelength light	Promotes activities and transcription of anthocyanin biosynthesis- related enzyme (including CHS and UFGT)	[<u>55</u>]	

Materials 2	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H_2	Mechanism	Ref. No.	_
<i>Medicagosativa</i> 'Victoria' 2	Preharvest	HRW (781 μM); the seedlings were pretreated for 12 h	2 ~320 μM [<u>31</u>]	Alleviates UV- B-triggered oxidative damage	Regulates (iso)flavonoids metabolism and antioxidant defense	[<u>51</u>]	osynthetic s ^[29] , and

Table 4. Roles of H_2 involved in carbon and nitrogen metabolism in horticultural crops.

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
<i>Cucumis</i> <i>sativus</i> 'XinJinchun No. 4'	Preharvest	Hoagland's nutrient solution with H ₂ (220 µM H ₂); the seedlings were pretreated for 7 d (replaced daily)	~110 μM	Improves heat tolerance	Improves photosynthetic and antioxidant and increases HSP70 content	[<u>31</u>]
Brassica rapa var. chinensis 'Dongfang 2'	Preharvest	HRW; $1/4$ Hoagland's nutrient solution with H2 (835.1 µM H ₂); regarding soil cultivation, sprays with HRW (50 mL) at every 12 h for 17 d; for hydroponic solutions, the seedlings were incubated in 1/4 Hoagland solution with H ₂ for 4 d (replaced every 12 h) with Ca(NO ₃) ₂	~417 µM	Reduces Ca(NO ₃) ₂ toxicity and improves the growth of seedlings	Enhances antioxidant capacities and reestablishes nitrate homeostasis	[<u>56</u>]
<i>Cucumis</i> sativus 'Jinyou 35'	Preharvest	HRW (450 μM); the seeds were soaked for 8 h	~450 μM	Enhances lower temperature tolerance	Increases the activities of key photosynthetic enzymes and maintains a high level of carbon and	[<u>57</u>]

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H_2	Mechanism	Ref. No.	_
					nitrogen metabolism		
Hypsizygus marmoreus	Preharvest	HRW (800 µM); mycelia were incubated for 5 d (replaced every 12 h) after removal of cadmium stress	~800 μM	Alleviates salinity and heavy metal toxicity	Activates pyruvate kinase, along with its induced gene expression	[<u>58]</u>	^{[<u>60]</u>. It has}
Solanum lycopersicum 'Jiafen No. 2'	3 3 Postharvest 2	HRW (780 μM); the fruits were soaked for 20 min	[<u>61]</u> ~585 μΜ	Reduces nitrite accumulation during storage	Inhibits/increases the activity and transcript level of NR/NiR	[<u>59</u>]	Na/K ratio
Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.	
Brassica rapa var. chinensis 'Dongfang 2'	Preharvest	1/4 Hoagland's nutrient solution with H ₂ ; the seedlings were pretreated for 1 d (replaced every 12 h)	Not shown (50% saturation HRW)	Reduces cadmium accumulation	Inhibits the expression of <i>BcIRT1</i> and <i>BcZIP2</i> , and reduces cadmium absorption	[<u>62</u>] [<u>63</u>]	
Brassica napus 'Zhongshuang 11'	Preharvest	Ammonia borane (NH ₃ ·BH ₃ ; 2 mg/L); the seedlings were incubated for 3 d (changed daily) under NaCl, PEG, or Cd stress	~300 μM	Enhances the tolerance against salinity, drought, or cadmium	Decreases cell death rebuilds redox and ion homeostasis, increases proline content, thus reducing cadmium absorption and accumulation	[<u>61</u>]	
<i>Cucumis sativus</i> 'Xinchun 4'	Preharvest	HRW (450 μM); the seedlings incubated for 2/5 d (changed daily)	~450 μM	Induces adventitious rooting	Regulates the protein and gene expressions of PM H ⁺ -ATPase and 14-3-3 mediated by NO.	[<u>64]</u>	

2.6. H₂ Is Involved in Phytohormones Signaling

Abscisic acid (ABA), ethylene (ETH), and jasmonate acid (JA) can induce H_2 , but the specific biosynthesis pathway has yet to be elucidated ^{[65][66]}. For alfalfa drought response, H_2 acted as a positive regulator in the ABA signaling cascade to regulate stomatal movement ^[66] (**Table 6**). H_2 -modified apoplastic pH by H⁺-ATPase might be involved in this signaling process. Moreover, H_2 differentially increased the transcriptional factor genes involved in ABA signaling, including *MYB102*, *MYC2*, and *ABF/AREB2* ^[67].

Table 6. Roles of H_2 involved in phytohormones signaling in horticultural crops.

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.
<i>Medicagosativa</i> 'Victoria'	Preharvest	HRW; the seedlings were irrigated for 7 d before 15-d drought treatment	Not shown (50% saturation HRW)	Induces drought tolerance	Modulates stomatal sensitivity to ABA and Apoplastic pH	[<u>66</u>]
<i>Medicagosativa</i> 'Victoria'	Preharvest	1/4 Hoagland's nutrient solution with H ₂ (780 µM H ₂); the seedlings were pretreated for 12 h	~390 µM	Induces tolerance against osmotic stress	Involved in phytohormone signaling	[<u>67</u>]
<i>Cucumis sativus</i> 'Xinchun 4'	Preharvest	HRW (680 μM); the seedlings were incubated for 7 d (changed daily)	~350 μM	Induces adventitious rooting	Ethylene may be the downstream signaling molecule during H ₂ -induced adventitious rooting, and proteins RuBisCo, SBPase, OEE1, TDH, CAPX, and PDI may play important roles	[<u>68]</u>
<i>Cucumis sativus</i> 'Lufeng'	Preharvest	HRW (220 μM); incubated for 4 d	~110 µM	Regulates adventitious root development	Regulates HO-1 signaling	[<u>12]</u>

Materials	Treatment Stage	H ₂ Delivery Methods and Treatment	Effective Concentration of H ₂	Functions of H ₂	Mechanism	Ref. No.	
Vigna radiata; Cucumis sativus 'Jinchun 4'; Raphanus sativus 'Yanghua'	Preharvest	1/8 strength Hoagland nutrition solution with H ₂ (800 μM); the seedlings were incubated for 5 d (replaced every 12 h)	~480 μM	Promotes elongation of hypocotyls and roots	Increases GA and IAA contents in the hypocotyl and the root	[69]	
Vigna radiata	Preharvest	HRW; seeds were soaked for 3 d	100/250 μM	Promotes the growth of shoots and roots	Involved in phytohormone signaling	[<u>65</u>]	
Freesia refracta	Preharvest	HRW (75 μM); the bulbs were soaked for 6 h; irrigated HRW at every 7–10 d and total 3 times after scape sticking out	~37.5 µM	Promotes early flowering; increases the number and diameters of florets	Regulates phytohormone and soluble sugar content	[70]	
Actinidia deliciosa 'Xuxiang'	Postharvest	Gas; the fruits were fumigated for 24 h/12 h + 12 h	~0.2 µM	Prolongs the shelf life	Decreases ethylene biosynthesis	[<u>71</u>]	
Rosa chinensis 'Movie star'	Postharvest	HRW (235 µM); cut flowers were incubated for vase periods (changed daily) [73]	~2.35 μM 2	Alleviates postharvest ² senescence	Inhibits ethylene production and alleviates ethylene signal transduction	[<u>72</u>] 2 /	or oth arrier th made l hich ma

estimated to produce H₂ for ~USD 5.50 per kilogram of H₂. Although renewable H₂ is relatively expensive, its production costs are reducing. According to the BloombergNEF's report of "Hydrogen Economy Outlook" ^[74], between 2014 and 2019, the cost of alkaline electrolyzers fell 40% in North America and Europe, and systems made in China are already up to 80% cheaper than those made elsewhere. They forecast that renewable H₂ could be produced for USD 0.7 to USD 1.6/kg H₂ in most parts of the world before 2050. Thus, the cost for applying H₂ in horticulture is primarily dependent on the cost of labor, which is both feasible and affordable, at least under current economic conditions.

 H_2 has been applied in the above-mentioned important horticultural crops, confirming its positive effects both on plant growth, development, stress tolerance, and postharvest storage (**Figure 3**). A recent field trial has observed that H_2 infusion increased H_2 -oxidizing bacteria activities, accompanied with an alteration of composition and structure of the microbial community ^[75]. However, the above effects of H_2 on soil microbe were significantly influenced by environmental conditions, which would be taken into account in further H_2 field trials. The potential negative effect of H_2 on soil ecosystems should also be concerning. For example, H_2 exposure may stimulate methane oxidation and the activities of pathogens that use H_2 as an energy source ^[9]. Therefore, long-term and large-scale commercial field trials of H_2 require further investigation, especially in the evaluation of resistance to pests and diseases, yield, and quality, as well as environmental impact. In addition, enhanced understanding is required with respect to the causal mechanisms underlying plant H_2 production and action.

Overall, H_2 has a substantial potential in horticultural applications to reduce fertilizer and pesticide use, providing higher-value and nutrient-rich horticultural crops. Since making technology cheap requires technological advance, we urge the cooperation of the industrial community. The next step may focus on practical application of H_2 in horticulture.

References

- 1. López-García, P.; Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 2020, 5, 655–667.
- 2. Gaffron, H. Reduction of carbon dioxide with molecular hydrogen in green algæ. Nature 1939, 143, 204–205.
- 3. Renwick, G.M.; Giumarro, C.; Siegel, S.M. Hydrogen metabolism in higher plants. Plant Physiol. 1964, 39, 303–306.
- 4. Czerkawski, J.W. Fate of metabolic hydrogen in the rumen. Proc. Nutr. Soc. 1972, 31, 141–146.
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694.
- Xie, Y.; Mao, Y.; Lai, D.; Zhang, W.; Shen, W. H2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS ONE 2012, 7, e49800.
- 7. Russell, G.; Zulfiqar, F.; Hancock, J.T. Hydrogenases and the role of molecular hydrogen in plants. Plants 2020, 9, 1136.
- 8. Constant, P.; Poissant, L.; Villemur, R. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Sci. Total Environ. 2009, 407, 1809–1823.

- 9. Piche-Choquette, S.; Constant, P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl. Environ. Microbiol. 2019, 85, e02418-18.
- 10. Dong, Z.; Wu, L.; Kettlewell, B.; Caldwell, C.D.; Layzell, D.B. Hydrogen fertilization of soils—is this a benefit of legumes in rotation? Plant. Cell Environ. 2003, 26, 1875–1879.
- 11. Jin, Q.; Zhu, K.; Cui, W.; Xie, Y.; Han, B.; Shen, W. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36, 956–969.
- Lin, Y.; Zhang, W.; Qi, F.; Cui, W.; Xie, Y.; Shen, W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J. Plant Physiol. 2014, 171, 1–8.
- Cao, Z.; Duan, X.; Yao, P.; Cui, W.; Cheng, D.; Zhang, J.; Jin, Q.; Chen, J.; Dai, T.; Shen, W. Hydrogen gas is involved in auxin-induced lateral root formation by modulating nitric oxide synthesis. Int. J. Mol. Sci. 2017, 18, 2084.
- Wu, Q.; Su, N.; Cai, J.; Shen, Z.; Cui, J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J. Plant Physiol. 2015, 175, 174–182.
- 15. Cui, W.; Gao, C.; Fang, P.; Lin, G.; Shen, W. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J. Hazard. Mater. 2013, 260, 715–724.
- 16. Hu, H.; Li, P.; Shen, W. Preharvest application of hydrogen-rich water not only affects daylily bud yield but also contributes to the alleviation of bud browning. Sci. Hortic. Amst. 2021, 287, 110267.
- 17. Hu, H.; Li, P.; Wang, Y.; Gu, R. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156, 100–109.
- Yun, Z.; Gao, H.; Chen, X.; Chen, Z.; Zhang, Z.; Li, T.; Qu, H.; Jiang, Y. Effects of hydrogen water treatment on antioxidant system of litchi fruit during the pericarp browning. Food Chem. 2021, 336, 127618.
- 19. Ren, P.; Jin, X.; Liao, W.; Wang, M.; Niu, L.; Li, X.; Xu, X.; Zhu, Y. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers. Hortic. Environ. Biote. 2017, 58, 576–584.
- 20. Cai, M.; Du, H. Effects of hydrogen-rich water pretreatment on vase life of carnation (Dianthus caryophyllus) cut flowers. J. Shanghai Jiao Tong Univ. (Agric. Sci.) 2015, 33, 41–45. (In Chinese)
- Zhou, X.; Joshi, S.; Patil, S.; Khare, T.; Kumar, V. Reactive oxygen, nitrogen, carbonyl and sulfur species and their roles in plant abiotic stress responses and tolerance. J. Plant Growth Regul. 2021.
- 22. Liu, F.; Cai, B.; Sun, S.; Bi, H.; Ai, X. Effect of hydrogen-rich water soaked cucumber seeds on cold tolerance and its physiological mechanism in cucumber seedlings. Sci. Agric. Sin. 2017, 50,

881-889. (In Chinese)

- 23. Jin, Q.; Cui, W.; Dai, C.; Zhu, K.; Zhang, J.; Wang, R.; La, H.; Li, X.; Shen, W. Involvement of hydrogen peroxide and heme oxygenase-1 in hydrogen gas-induced osmotic stress tolerance in alfalfa. Plant Growth Regul. 2016, 80, 215–223.
- Su, J.; Zhang, Y.; Nie, Y.; Cheng, D.; Wang, R.; Hu, H.; Chen, J.; Zhang, J.; Du, Y.; Shen, W. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environ. Exp. Bot. 2018, 147, 249–260.
- Chen, M.; Cui, W.; Zhu, K.; Xie, Y.; Zhang, C.; Shen, W. Hydrogen-rich water alleviates aluminuminduced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J. Hazard. Mater. 2014, 267, 40–47.
- 26. Su, N.; Wu, Q.; Chen, H.; Huang, Y.; Zhu, Z.; Chen, Y.; Cui, J. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide. Environ. Pollut. 2019, 251, 45–55.
- 27. Wang, B.; Bian, B.; Wang, C.; Li, C.; Fang, H.; Zhang, J.; Huang, D.; Huo, J.; Liao, W. Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. PLoS ONE 2019, 14, e212639.
- Jiang, K.; Kuang, Y.; Feng, L.; Liu, Y.; Wang, S.; Du, H.; Shen, W. Molecular hydrogen maintains the storage quality of chinese chive through improving antioxidant capacity. Plants 2021, 10, 1095.
- 29. Su, J.; Nie, Y.; Zhao, G.; Cheng, D.; Wang, R.; Chen, J.; Zhang, S.; Shen, W. Endogenous hydrogen gas delays petal senescence and extends the vase life of lisianthus cut flowers. Postharvest Biol. Tec. 2019, 147, 148–155.
- 30. Del Rio, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837.
- Chen, Q.; Zhao, X.; Lei, D.; Hu, S.; Shen, Z.; Shen, W.; Xu, X. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heatstressed cucumber leaves. Plant Growth Regul. 2017, 83, 69–82.
- 32. Chen, Y.; Wang, M.; Hu, L.; Liao, W.; Dawuda, M.M.; Li, C. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress. Front. Plant Sci. 2017, 8, 128.
- 33. Wu, Q.; Huang, L.; Su, N.; Shabala, L.; Wang, H.; Huang, X.; Wen, R.; Yu, M.; Cui, J.; Shabala, S. Calcium-dependent hydrogen peroxide mediates hydrogen-rich water-reduced cadmium uptake in plant roots. Plant Physiol. 2020, 183, 1331–1344.

- 34. Zhu, Y.; Liao, W.; Niu, L.; Wang, M.; Ma, Z. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. BMC Plant Biol. 2016, 16, 146.
- 35. Zhu, Y.; Liao, W.; Wang, M.; Niu, L.; Xu, Q.; Jin, X. Nitric oxide is required for hydrogen gasinduced adventitious root formation in cucumber. J. Plant Physiol. 2016, 195, 50–58.
- 36. Wang, Y.; Lv, P.; Kong, L.; Shen, W.; He, Q. Nanomaterial-mediated sustainable hydrogen supply induces lateral root formation via nitrate reductase-dependent nitric oxide. Chem. Eng. J. 2021, 405, 126905.
- Chen, H.; Zhang, J.; Hao, H.; Feng, Z.; Chen, M.; Wang, H.; Ye, M. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. Amb. Express. 2017, 7, 221.
- 38. Li, L.; Yin, Q.; Zhang, T.; Cheng, P.; Xu, S.; Shen, W. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) Flowers. Plants 2021, 10, 1662.
- 39. Li, Y.; Li, L.; Wang, S.; Liu, Y.; Zou, J.; Ding, W.; Du, H.; Shen, W. Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis. Postharvest Biol. Tec. 2021, 177, 111526.
- 40. Huo, J.; Huang, D.; Zhang, J.; Fang, H.; Wang, B.; Wang, C.; Ma, Z.; Liao, W. Comparative proteomic analysis during the involvement of nitric oxide in hydrogen gas-improved postharvest freshness in cut lilies. Int. J. Mol. Sci. 2018, 19, 3955.
- 41. Song, Y.; Cong, F.; Li, C.; Du, H. Effects of hydrogen-rich water pretreatment on vase life and antioxidant system in cut freesia. J. Shanghai Jiao Tong Univ. (Agric. Sci.) 2018, 36, 1–6. (In Chinese)
- Maruyama-Nakashita, A.; Ohkama-Ohtsu, N. Sulfur assimilation and glutathione metabolism in plants. In Glutathione in Plant Growth, Development, and Stress Tolerance; Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Fujita, M., Tran, L.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 287–308.
- 43. Cui, W.; Yao, P.; Pan, J.; Dai, C.; Cao, H.; Chen, Z.; Zhang, S.; Xu, S.; Shen, W. Transcriptome analysis reveals insight into molecular hydrogen-induced cadmium tolerance in alfalfa: The prominent role of sulfur and (homo)glutathione metabolism. BMC Plant Biol. 2020, 20, 58.
- 44. Dai, C.; Cui, W.; Pan, J.; Xie, Y.; Wang, J.; Shen, W. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J. Proteomics 2017, 152, 109–120.
- 45. Wu, Q.; Su, N.; Chen, Q.; Shen, W.; Shen, Z.; Xia, Y.; Cui, J. Cadmium-induced hydrogen accumulation is involved in cadmium tolerance in Brassica campestris by reestablishment of reduced glutathione homeostasis. PLoS ONE 2015, 10, e139956.

- Cui, W.; Fang, P.; Zhu, K.; Mao, Y.; Gao, C.; Xie, Y.; Wang, J.; Shen, W. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotox. Environ. Safe. 2014, 105, 103–111.
- 47. Liu, F.; Lou, W.; Wang, J.; Li, Q.; Shen, W. Glutathione produced by γ-glutamyl cysteine synthetase acts downstream of hydrogen to positively influence lateral root branching. Plant Physiol. Bioch. 2021, 167, 68–76.
- Ren, A.; Liu, R.; Miao, Z.; Zhang, X.; Cao, P.; Chen, T.; Li, C.; Shi, L.; Jiang, A.; Zhao, M. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ. Microbiol. 2017, 19, 566– 583.
- 49. Li, L.; Liu, Y.; Wang, S.; Zou, J.; Ding, W.; Shen, W. Magnesium hydride-mediated sustainable hydrogen supply prolongs the vase life of cut carnation flowers via hydrogen sulfide. Front. Plant Sci. 2020, 11, 595376.
- 50. Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New roles for old molecules. J. Integr Plant Biol 2010, 52, 98–111.
- 51. Xie, Y.; Zhang, W.; Duan, X.; Dai, C.; Zhang, Y.; Cui, W.; Wang, R.; Shen, W. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso)flavonoids and antioxidant defence in Medicago sativa. Funct. Plant Biol. 2015, 42, 1141.
- 52. Su, N.; Wu, Q.; Liu, Y.; Cai, J.; Shen, W.; Xia, K.; Cui, J. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J. Agr. Food Chem. 2014, 62, 6454–6462.
- 53. Zhang, X.; Wei, J.; Huang, Y.; Shen, W.; Chen, X.; Lu, C.; Su, N.; Cui, J. Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls. Front. Plant Sci 2018, 9, 1020.
- 54. Zhang, X.; Su, N.; Jia, L.; Tian, J.; Li, H.; Huang, L.; Shen, Z.; Cui, J. Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A. BMC Plant Biol. 2018, 18, 227.
- 55. Zhang, X.; Wei, J.; Tian, J.; Li, N.; Jia, L.; Shen, W.; Cui, J. Enhanced anthocyanin accumulation of immature radish microgreens by hydrogen-rich water under short wavelength light. Sci. Hortic. Amst. 2019, 247, 75–85.
- 56. Wei, X.; Chen, J.; Chen, H.; Wu, X.; Tian, J.; Su, N.; Cui, J. Hydrogen-rich water ameliorates the toxicity induced by Ca(NO3)2 excess through enhancing antioxidant capacities and re-establishing nitrate homeostasis in Brassica campestris spp. chinensis L. seedlings. Acta. Physiol. Plant 2021, 43, 50.

- 57. Liu, F.; Zhang, X.; Li, D.; Zhai, J.; Bi, H.; Ai, X. Effect of exogenous hydrogen on photosynthetic carbon assimilation and nitrogen metabolism of cucumber seedlings under low temperature. Acta Hortic Sin. 2020, 47, 287–300. (In Chinese)
- Zhang, J.; Hao, H.; Chen, M.; Wang, H.; Feng, Z.; Chen, H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. Amb. Express. 2017, 7, 107.
- 59. Zhang, Y.; Zhao, G.; Cheng, P.; Yan, X.; Li, Y.; Cheng, D.; Wang, R.; Chen, J.; Shen, W. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas. Int. J. Food Prop. 2019, 22, 1425–1438.
- 60. Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324.
- 61. Zhao, G.; Cheng, P.; Zhang, T.; Abdalmegeed, D.; Xu, S.; Shen, W. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotox. Environ. Safe. 2021, 224, 112640.
- 62. Wu, X.; Zhu, Z.B.; Chen, J.H.; Huang, Y.F.; Liu, Z.L.; Zou, J.W.; Chen, Y.H.; Su, N.N.; Cui, J. Transcriptome analysis revealed pivotal transporters involved in the reduction of cadmium accumulation in pak choi (Brassica chinensis L.) by exogenous hydrogen-rich water. Chemosphere 2019, 216, 684–697.
- 63. Wu, X.; Su, N.; Yue, X.; Fang, B.; Zou, J.; Chen, Y.; Shen, Z.; Cui, J. IRT1 and ZIP2 were involved in exogenous hydrogen-rich water-reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana. J. Hazard. Mater. 2021, 407, 124599.
- 64. Li, C.; Huang, D.; Wang, C.; Wang, N.; Yao, Y.; Li, W.; Liao, W. NO is involved in H2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3. Planta 2020, 252, 9.
- 65. Zeng, J.; Zhang, M.; Sun, X.; Meijler, M.M. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS ONE 2013, 8, e71038.
- 66. Jin, Q.; Zhu, K.; Cui, W.; Li, L.; Shen, W. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa. J. Plant Growth Regul. 2016, 35, 565–573.
- 67. Felix, K.; Su, J.; Lu, R.; Zhao, G.; Cui, W.; Wang, R.; Mu, H.; Cui, J.; Shen, W. Hydrogen-induced tolerance against osmotic stress in alfalfa seedlings involves ABA signaling. Plant Soil 2019, 445, 409–423.
- 68. Huang, D.; Bian, B.; Zhang, M.; Wang, C.; Li, C.; Liao, W. The role and proteomic analysis of ethylene in hydrogen gas-induced adventitious rooting development in cucumber (Cucumis sativus L.) explants. PeerJ 2020, 8, e8896.

- 69. Wu, Q.; Su, N.; Huang, X.; Ling, X.; Yu, M.; Cui, J.; Shabala, S. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin. Funct. Plant Biol. 2020, 47, 771.
- Song, Y.; Li, C.; Xie, P.; Cong, F.; Du, H. Effects of application on stage and methods of hydrogenrich water on blossom of freesia (Fressia refracta) and related physiological mechanisms. J. Shanghai Jiao Tong Univ. (Agric. Sci.) 2017, 35, 10–16. (In Chinese)
- 71. Hu, H.; Zhao, S.; Li, P.; Shen, W. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol. Tec. 2018, 135, 123–130.
- 72. Wang, C.; Fang, H.; Gong, T.; Zhang, J.; Niu, L.; Huang, D.; Huo, J.; Liao, W. Hydrogen gas alleviates postharvest senescence of cut rose 'Movie star' by antagonizing ethylene. Plant Mol. Biol. 2020, 102, 271–285.
- 73. Finke, C.E.; Leandri, H.F.; Karumb, E.T.; Zheng, D.; Hoffmann, M.R.; Fromer, N.A. Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions. Energ. Environ. Sci. 2021, 14, 1517–1529.
- 74. BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020. Available online: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf (accessed on 13 November 2021).
- 75. Wang, X.B.; Schmidt, R.; Yergeau, É.; Constant, P. Field H2 infusion alters bacterial and archaeal communities but not fungal communities nor nitrogen cycle gene abundance. Soil Biol. Biochem. 2020, 151, 108018.

Retrieved from https://encyclopedia.pub/entry/history/show/42500