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Vegetation indices have a crucial role in precision agriculture and crop monitoring by providing a straightforward

and reliable assessment of the condition and health of crops. Depending on the vegetation index, information on

various aspects of plant growth and development can be monitored, such as chlorophyll content, leaf area, canopy

structure, and water status. This information can then be used to optimize prescription rates in precision

agriculture, such as variable fertilizer application, irrigation, and pesticide application. This is generally performed

by identifying intra-field zones that are underperforming or experiencing stress, and target inputs to those areas to

improve crop productivity and yield. Vegetation indices also provide a cost-effective and non-destructive way of

crop monitoring, ensuring a widely available and environmentally sustainable approach for assessing crop health.

The development of remote-sensing sensors for crop monitoring in both broadband and narrowband bands opens

immense possibilities for their combination into novel vegetation indices.
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1. Present and Future Vegetation-Index-Based Applications
in Precision Agriculture Using Artificial Intelligence

Various vegetation indices are sensitive to different aspects of plant physiology, such as chlorophyll content, leaf

area, and water stress, and can be used to identify areas of the field that require attention or treatment . To

efficiently manage large spectral data and vegetation indices, there has been a growing interest in research using

artificial intelligence (AI) to extract valuable information about crop health and yield. While AI in precision

agriculture encompasses a broad range of technologies, especially the Internet of Things (IoT) , the classification

and regression using machine learning and deep learning are primary technologies for processing vegetation index

data . However, it is important to note that these techniques require significant data and computational

resources, as well as careful calibration and validation to ensure accuracy and reliability . As such, their use must

be balanced with other tools and knowledge to make informed decisions about crop management in a dynamic and

complex environment.

By determining the changes in vegetation indices based on multitemporal images, previous studies detected intra-

field zones that are experiencing crop stress, caused by either water or nutrient deficiency . On a larger scale,

machine learning and deep learning algorithms were successfully adopted to classify different crops and identify
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areas of the field where crop rotation or intercropping may be beneficial . Another frequent application of

vegetation indices in recent research is crop-yield prediction, which is often based on machine-learning regression,

using multitemporal vegetation indices as covariates . This information can be used to make informed decisions

about harvesting and marketing the crop, ensuring the optimization of agricultural inputs in future growing seasons.

To determine low potential intra-field areas, it is possible to avoid low yield by adjusting input-use as a part of

variable-rate technology (VRT), especially crop disease detection and management, enabling the development of

algorithms to prevent the spread of disease and minimize crop loss . Moreover, they are also being increasingly

used for precision fertilization with the aim of determining the optimal amount and timing of fertilizer application .

This allows minimization of fertilizer use, which can be expensive and harmful to the environment, while

maximizing crop yield. If a selected vegetation index indicates that a particular area of the field is experiencing a

nutrient deficiency, the fertilizer specifically can be applied to that area to address the deficiency without

overapplying fertilizer to other areas of the field.

2. Sensors Used for Calculating Vegetation Indices in
Precision Agriculture

Available remote-sensing sensors have different spectral and spatial resolutions, as well as varying levels of

atmospheric correction capabilities, which can affect the accuracy and reliability of vegetation-index calculations

. The sensors with higher spectral resolution can detect finer differences in plant reflectance, allowing for more

accurate discrimination between different plant species and more precise measurement of vegetation parameters,

such as chlorophyll content and leaf area . On the other hand, sensors with higher spatial resolution can provide

more detailed and accurate maps of vegetation patterns and distribution, allowing for finer-scale analysis of crop

health and productivity . The recent studies noted RGB, multispectral, hyperspectral, thermal, radar, and LiDAR

sensors as the most frequently applied remote-sensing tools for determining crop properties .

While hyperspectral sensors offer the most advanced capabilities of sensing and calculating vegetation indices of

the listed sensors, the high cost of commercial solutions for hyperspectral imaging presently restricts their

widespread use . Both RGB (red, green, blue) and multispectral sensors are more accessible and affordable for

widespread vegetation-index calculation in precision agriculture, although they have different strengths and

limitations . RGB sensors, commonly found in low-cost consumer drones and cameras, can be used to visually

inspect crop health and detect any obvious issues, such as pests or diseases, but they are limited in their ability to

measure the subtler differences in plant reflectance that are indicative of changes in vegetation health and

productivity . Multispectral sensors, on the other hand, are designed to capture a wider range of wavelengths,

including both visible and near-infrared light. This allows for the measurement of plant reflectance in different

spectral bands, which can be used to calculate vegetation indices that provide more detailed information about

vegetation health and productivity . While RGB sensors can provide a quick visual assessment of crop health,

multispectral sensors are typically better suited for vegetation-index calculation and more detailed analysis of

vegetation health and productivity in precision agriculture .
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3. Major Vegetation Indices in Precision Agriculture Based
on Multispectral Sensors

According to the number of scientific papers indexed in WoSCC since 2000 with the topic of “precision agriculture”

and vegetation indices based on multispectral sensors, the   normalized difference vegetation index (NDVI) was

dominantly the most frequently used vegetation index in precision agriculture with a total of 2200 studies. Like most

vegetation indices based on multispectral sensors, NDVI is calculated using the reflectance values of red and near-

infrared light, and it provides a measure of the greenness or photosynthetic activity of vegetation . China (553

papers) and the United States (484 papers) accounted for 47.1% of these papers. With the additional query of

“yield” in the topic search, 1046 papers were identified, as well as 382 papers for “biomass” and 140 papers for

“fertilization”. The majority of these studies were based on satellite mission data (925 papers), as opposed to

unmanned aerial vehicle (UAV) images (303 papers), out of which 162 papers were indexed from 2020 to 2022.

The research of NDVI for the prediction of crop traits, especially yield and biomass, of various crops was proven

successful, while the exact effect of remote-sensing platforms on prediction accuracy is still unclear.

Despite the immense popularity of NDVI in scientific studies of precision agriculture in the past decade, several

indices were developed to improve its drawbacks, potentially providing more effective crop monitoring and

assessment depending on the field and crop conditions. Among them, EVI improves NDVI by minimizing the

effects of soil background and atmospheric influences . Enhanced vegetation index (EVI) takes into account the

non-linear relationship between reflectance and vegetation coverage, and it includes the blue reflectance in

addition to the red and near-infrared bands used in NDVI . This makes EVI a more robust index for analyzing

vegetation health and vigor, especially in areas with high soil background or atmospheric interference . By

replacing the red band with green in NDVI formula, GNDVI is potentially more suitable in areas with high soil

background or atmospheric interference . GNDVI may also be more effective than NDVI at detecting changes in

vegetation caused by environmental factors such as water stress, disease, or nutrient deficiencies . 

4. Major Vegetation Indices in Precision Agriculture Based
on RGB Sensors

Similar to the case of major vegetation indices based on multispectral sensors, the normalized green–red

difference index (NGRDI) has been the predominantly used index of the available indices based on RGB sensors

during the past decade, based on the scientific papers indexed in WoSCC with the topic of “precision agriculture”

and vegetation indices based on RGB sensors. The NGRDI provides a low-cost solution to replace NDVI using the

RGB sensors, allowing a similar degree of sensitivity to changes in chlorophyll content in plants by replacing near-

infrared with green reflectance . While the NGRDI can be a useful index for detecting early signs of crop stress

or disease , the NDVI provides a more comprehensive assessment of vegetation health and productivity. Since

NGRDI is primarily sensitive to chlorophyll content in plants , while the NDVI is sensitive to the amount of

vegetation present, including leaves, stems, and branches, its application in precision agriculture is less obstructed

than areas with more heterogeneous vegetation, such as forestry .
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ExG and ExR indices follow NGRDI as the cost-effective solutions for the assessment of vegetation health and

vigor and are mutually complementary. The ExG is sensitive to chlorophyll content of crops, with its higher values

indicating healthier and more vigorous vegetation, while lower values indicate stressed or damaged vegetation .

The ExR is more sensitive to density and crop distribution than ExG, complementing the crop health assessment

by ExG by providing the indirect information about the crop biomass . The VARI is based on a similar formula to

that of NGRDI, with the addition of blue reflectance in the denominator, which improves resistance to atmospheric

effects such as haze, clouds, and shadows . It is particularly useful in areas with high atmospheric interference,

such as urban environments or areas with frequent cloud cover, where other vegetation indices may be less

reliable . It is also useful for monitoring vegetation health in areas with mixed land use or variable soil conditions,

where the vegetation signal may be mixed with non-vegetation signals .
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