Lane Detection and Tracking

Subjects: Transportation Science & Technology Contributor: Nirajan Shiwakoti

Lane detection and tracking are the advanced key features of the advanced driver assistance system. Lane detection is the process of detecting white lines on the roads. Lane tracking is the process of assisting the vehicle to remain in the desired path, and it controls the motion model by using previously detected lane markers.

Keywords: lane detection ; lane tracking system ; lane departure warning system ; advanced driver assistance system ; automated vehicles

1. Introduction

Autonomous passenger vehicles are a direct implementation of transportation-related autonomous robotics research. They are also known as self-driving vehicles or driverless vehicles. Shakey the robot (1966–1972) is the first autonomous mobile robot that has been documented ^[1]. It was developed by Stanford Research Institute's Artificial Intelligence Centre and was capable of detecting the environment, thinking, planning, and navigation. In basic settings, vision-based lane tracking and obstacle avoidance sparked interest in autonomous vehicles ^[2]. In the early 1990s, The Royal Armament Research and Development Establishment in the United Kingdom created two vehicles for obstacle-free navigation on and off the road [3]. In the United States, the first operations of autonomous driving in realistic settings dates back to Carnegie Mellon University's NavLab in the early 1990s [4]. The vehicle developed by NavLab was operated at very low speeds due to the limited computational power available at the time. Early US research projects also included the California PATH project, which developed the automated highway [5]. Vehicle steering was automated with manual longitudinal control in the "No Hands Across America" project [6]. In early 2000, CyberCars, one of several European projects began developing technologies based on automated transport ^[2]. The announcement of the defence advanced research projects agency (DARPA) grand challenge in 2003 generated research interest in autonomous cars. Following that, in 2006, the DARPA urban challenge was performed in a controlled situation with a variety of autonomous and human-operated vehicles. Since then, many manufactures, including Audi, BMW, Bosch, Ford, GM, Lexus, Mercedes, Nissan, Tesla, Volkswagen, Volvo and Google, have launched self-driving vehicle projects in collaboration with universities ^[8]. Google's self-driving car has experimented and travelled 500 thousand kilometres and has begun building prototypes of its own cars ^[9]. A completely autonomous vehicle would be expected to drive to a chosen location without any expectation of shared control with the driver, including safety-critical tasks.

The performance of lane detection and tracking depends on the well-developed roads and their lane markings, so smart cities are also a prominent factor in autonomous vehicle research. The idea of a smart city is often linked with an eco-city or a sustainable city, both of which seek to enhance the quality of municipal services while lowering their costs. Smart cities' primary goal is to balance technological innovation with the economic, social, and environmental problems that tomorrow's cities face. The greater closeness between government and people is required in smart cities that embrace the circular economy's concepts ^[10]. The way materials and goods flow around people and their demands will alter, as will the structure of cities. Several car manufacturers such as Tesla and Audi have already launched autonomous vehicle marketing for private use. Soon, society will be influenced by autonomous vehicles' spread to urban transport systems ^[11]. The development of smart cities with the introduction of connected and autonomous vehicles could potentially transform cities and guide long-term urban planning ^[10].

Autonomous vehicles and Advanced Driver Assistance Systems (ADAS) are predicted to provide a higher degree of safety and reduce fuel and energy consumption and road traffic emissions. ADAS is implemented for safe and efficient driving, which has many driver assistance features such as warning drivers about forwarding collision warning or safe lane change ^[12]. Research shows that most accidents occur because of driver errors, and the ADAS can reduce the accidents and workload of the driver. If there is a likelihood of an accident, ADAS can take the necessary action to avoid it ^[13]. Lane departure warning (LDW), which utilizes lane detection and tracking algorithms, is an essential feature of the ADAS. The LDW warns the driver when a vehicle crosses white lane lines unintentionally and controls the vehicle by bringing it back

into the desired safe path. Three types of approaches for lane detection are usually discussed in the existing literature: learning-based approach, features-based approach, and model-based approach ^{[13][14][15][16][17][18]}. Many challenges and issues have been highlighted in the literature regarding the LDW systems, such as visibility conditions change, variation in images, and lane appearance diversity ^[17]. Since different countries have used various lane markers, there is a challenge for lane detection and tracking to solve the problems.

2. Lane Detection and Tracking Algorithms

The feature-based approach uses edges and local visual characteristics of interest, such as gradient, colour, brightness, texture, orientation, and variations, which are relatively insensitive to road shapes but sensitive to illumination effects. The model-based approaches apply global road models to fit low levels of features that are more robust against illumination effects, but they are sensitive to road shapes ^{[13][14]}. The geometrics parameters are used in the model-based approach for lane detection ^{[16][17][18]}. The learning-based approach consists of two stages: training and classification. The training process uses previously known errors and system properties to construct a model, e.g., program variables. In addition, the classification phase applies the training model to the user set of properties and outputs that are more likely to be correlated with the error ordered by their probability of fault discloser ^[19]. It is then followed up by summary tables (**Table 2**, **Table 3** and **Table 4**) that present the key features of these algorithms and strengths, weaknesses, and future prospects.

Methods	Steps	Tool Used	Data Used	Methods Classification	Remarks	
Image and sensor-based lane detection and tracking	 Image frames are pre-processed Lane detection algorithm is applied The sensors values are used to track the lanes 	CameraSensors	sensors values	Feature-based approach	Frequent calibration is required for accurate decision making in a complex environment	
Predictive controller for lane detection and controller	Machine learning technique (e.g., neural networks,)	 Model predictive controller Reinforcement learning algorithms 	data obtained from the controller	Learning- based approach	Reinforcement learning with model predictive controller could be a better choice to avoid false lane detection.	
Robust lane detection and tracking	 Capture an image through camera Use Edge detector to data for extract the features of the image Determination of vanishing point 	Based on robust lane detection model algorithms	Real-time	Model-based approach	Provides better result in different environmental conditions. Camera quality plays important role in determining lanes marking	

Table 1. A summary of methods used for lane detection and tracking with general remarks.

Table 2. A comprehensive summary of lane detection and tracking algorithm.

Data								Future	Data	Reason for
Sources	Simulation	Real	Method Used	Advantages	Drawbacks	Results	Tool Used	Prospects	Data	Drawbacks
[20]		Y	Inverse perspective mapping method is applied to convert the image to bird's eye view.	Minimal error and quick detection of lane.	The algorithm performance drops when driving in tunnel due to the fluctuation in the lighting conditions.	The lane detection error is 5%. The cross- track error is 25% and lane detection time is 11 ms.	Fisheye dashcam, inertial measurement unit and ARM processor-based computer.	Enhancing the algorithm suitable for complex road scenario and with less light conditions.	Data obtained by using a model car running at a speed of 100 m/s.	Performance drop in determining the lane, if the vehicle is driving in a tunnel and the road conditions where there is no proper lighting. The complex environment creates unnecessary till causing some inaccuracy in lane detection.
[21]		Y	Kinematic motion model to determine the lane with minimal parameters of the vehicle.	No need for parameterization of the vehicle with variables like cornering stiffness and inertia. Prediction of lane even in absence of camera input for around 3 s.	The algorithm suitable for different environment situation not been considered	Lateral error of 0.15 m in the absence of camera image.	Mobileye camera, carsim and MATLAB/Simulink, Auto box from dSPACE.	Trying the fault tolerant model in real vehicle.	Test vehicle	
122	Y		Usage of inverse mapping for the creation of bird's eye view of the environment.	Improved accuracy of lane detection in the range of 86%to 96% for different road types.	Performance under different vehicle speed and inclement weather conditions not considered.	The algorithm requires 0.8 s to process frame. Higher accuracy when more than 59% of lane markers are visible.	Firewire color camera, MATLAB	Real-time implementation of the work	Highway and streets and around Atlanta	
[23]	Y	Y	Hough transform to extract the line segments, usage of a convolutional network- based classifier to determine the confidence of line segment.	Tolerant to noise	In the custom dataset, the performance drops compared to Caltech dataset.	For urban scenario, the proposed algorithm provides accuracy greater than 95%. The accuracy obtained in lane detection in the custom setup is 72% to 86%.	OV10650 camera and I MU is Epson G320.	Performance improvement is future consideration.	Caltech dataset and custom dataset.	The device specification and calibration, it plays important role in capturing the lane.

Sources	Data		Mathed		Drowbooko	Posulte		Future	Data	Reason for
Sources	Simulation	Real	Method Used	Advantages	Drawbacks	Results	lool Used	Prospects	Data	Drawbacks
[24]		Y	Feature-line- pairs (FLP) along with Kalman filter for road detection.	Faster detection of lanes, suitable for real- time environment.	Testing the algorithm suitability under different environmental conditions could be done.	Around 4 ms to detect the edge pixels, 80 ms to detect all the FLPs, 1 ms to determine the extract road model with Kalman filter tracking.	C++; camera and a matrox meteor RGB/ PPB digitizer.	Robust tracking and improve the performance in urban dense traffic.	Test robot.	
(25)	Y		Dual thresholding algorithm for pre- processing and the edge is detected by single direction gradient operator. Usage of the noise filter to remove the noise.	The lane detection algorithm insensitive headlight, rear light, cars, road contour signs.	The algorithm detects the straight lanes during the night.	Detection Of straight lanes.	Camera with RGB channel.		Custom dataset	Suitability of the algorithm for different types of roads during night to be studied.
[26]	Y		Determination of region of interest and conversion of binary image via adaptive threshold.	Better accuracy	The algorithm needs changes for checking its suitability for the day time lane detection	90% accuracy during night at isolated highways	Firewire S400 camera and MATLAB	Geometrics transformation of image for increasing the accuracy and intensity normalization.	Custom dataset	The constraints and assumption considered do not suit for the day time.
[27]	Y		Canny edge detector algorithm is used to detect the edges of the lanes.	Hough transform improves the output of the lane tracker.		Performance of the proposed system is better.	Raspberry pi based robust with camera and sensors.	Simulation of the proposed method by using raspberry Pi based robot with a monocular camera and radar-based sensors to determine the distance between neighboring vehicles.	Custom data	
[28]	Y		Video processing technique to determine the lanes illumination change on the region of interest.			Robust performance	vision-based vehicle	Determine the lanes illumination changes on the region of interest for curve line roads	Simulator	
(<u>29</u>)	Y	Y	A colour- based lane detection and representative line extraction algorithm is used.	Better accuracy in the day time.	Algorithm needs changes to test in different scenario.	The results show that the lane detection rate is more than 93%.	MATLAB	There is scope to test the algorithm in the night time.	Custom data	Unwanted noise reduces the performance of the algorithm.

Courses	Data		Mathead Lload	A du comto mo o	Droubecke	Desults	Teellland	Future	Data	Reason for
Sources	Simulation	Real	Method Used	Advantages	Drawbacks	Results	lool Used	Prospects	Data	Drawbacks
[30]		Y	Proposed hardware architecture for detecting straight lane lines using Hough transform.	Proposed algorithm provides better accuracy for occlusion, poor line paintings.	Computer complexity and high cost of HT (Hough transform)	Algorithm tested under various conditions of roads such as urban street, highway and algorithm provides a detection rate of 92%.	Virtex-5 ML 505 platform	Algorithm need to test with different weather condition.	Custom	
Table 3	. A compre	hensi	Proposed a lane detection Vmetholdoby in a circular arc or	Of Learning-b improves the performance of	as ectormoche dropped in lane detection when entering	Experiment performed predwithve co different road scene	ontroller lane d maps, video sensors, GPS,	etectionsend t method can	racking.	Due to low
Sources	Data Simulation	Real	parabolic – Method geometric	the lane AdVantages	the tunnel Drawbacks	and Resolutided better	Tool Used	previously Favaliable data. Prospects	Data	Reason for Drawback
[38] [32]	Y	Y	method. Progressional hieuxectodar labooledettime systeming debeasetieto larvening the structawed mathlings. unstructured maths	The proposed method works better under different Quick detection confidences such as rainy and snowy environments.	The suitability of the algorithm for multi-lane detection of lane curvature is to be studied.	results. Except rainy condition during the The asystem acquiepessed acquiepessed acquiepessed acquiepessed acquiepessed acquiese acquies	C++ and OpenCV on ubuntu operating MXTLAB Hardware: duel ARM cortex-A9 processors.	Algorithm can test.on an isolated highway, urban roads.	48 video clips from USA and Korea	Since the road environment may not be predictable, leads to false detection.
[33] [39]	Y	Y	Extraction of seharactotised detectitagend trackingm, mestanifier storiateristic algohithm is uns[1542476416 éfathcate error in lane Propestion	Multilane Regetatities of event furities algovithmanated Angwanated bougataries. knowledge about the lane is required.	UrBiffictHitting track and Scentros dualityCharles of the improved in space in space	The Caltech lannedetasets cbooisting of faletdypes of udtantabyving stendtos: stendtwed; coefforde; washinforon; while utilia of 12524ffames containing 4172 lane markinge	Test vehicle with LIDAR, GPS and MMM⊻AB	Algorithm needs to test with RADAR implessartiation visibhtbased Rightssed algorithm	Data from Guettim Konta road and Caltech dataset.	IMU sensors could be contracted incationated to avoid the faise detection of lanes.
[34]	Y		detect the pedestrian lanes under Refinentular underfikation conditions where the approximation where the approximation that impede Edgas points	Robust performance for pedestrian lane detection under unstructured environment. Robust lane detection	More challenging for indoor and outdoor environment.	shows that in Cardova 2 dataset, the dataset, the dataset, the accurace is dataset of accurace is higher value is higher	MATLAB Software based performance	There is scope for structured roads with different speeds limit	New dataset of 2000 images (custom)	Complex environment Due to the difficulty In image capturing
[<u>40</u>]	Y	Y	The Side Side And Side Side Side Side Side Side Side Sid	method by using a monocular camera in which the roads are provided with performance to provide for the second performance to provide the second performance to performance to performanc	Performance drops when road is not flat Performance	The algorithm shows better performance under different roads	Caltech dataset for different urban driving scenario. Hardware implementation on the Tuyou		Caltech and custom- made dataset	talse detection happened. More training or inclusion of sensors for live dataset
[35]	Υ	Y	viime:v8ting P\$98685s diffqs88biliont inf886biliont imf886biliond imf886biliond imf886biliond imf886biliond imf886biliond convert it to the polar angle constraint	a campus road, in Withershe road does not have lane markings.	drops due to low intensity of light	geometries such as straight, curve, polyline and complex	drightson Brytan Brytan		Custom data	colleetton illurrientien mitigate it.
			area.							

Sources	Data		-Mathanabused Addramanges	Drautocke Basulis	Torold Istach	Future	Data	Reason for		
	Simulatioon	Rreal		Hand Alta Bigs 2	DALEAMORICHER	Kesnind	Toworseed	Prospects	Pente	Dhawbacks
(36) [41]	Y	Ŷ	Based on voting map, detacted deasisting algoriting busage of cardistiant 20040000000000000000000000000000000000	Computational and experimental results show the method significantly invite stars method test algorithm within 33 ms per frame.	Need to reduce computational complexity by using vanishing point and	The proposed approach shows better accuracy cotdpated withities Nativities Nativities Nativities of the detection fate of the	Proposed method need to test with RADAR and vision-based sensors data Software based analysis done.	software based analysis and TM&T&AT chances, to test algorithm at day time with inclement weather	Fusion of camera and 2D LIDAR Custom data based on Real-	
[37]	Y		lane marker and finally fourth Main based approach for detecting clustering lanes, polect methods. and rese	The Nvidia tool comes with SDK (software development kit) with inbuild options for object detection, lane detection	adaptive ROI for every Mpangular camera with advance driver assistance system is costly.	algorithm is an average The affile taken to determine the lane falls under 6 to 9 ms.	C++ and NVidia's drive PX2 platform	conditions. Complex road scenario with different high intensity of light.	time KITT	
			Proposed a sharp curve	and free space.						
(42) Tabla (1	Y	honoi	lane from the input image based on hyperbola fitting. The input image is converted to grayscale image and the feature namely left edge, right edge and the extreme points of the lanes are uc calculated on	Better accuracy for sharp curve lanes.	The suitability of the algorithm for different road geometrics yet to study.	The results show that the accuracy of lane detection is around 97% and the average time taken to detect the lane is 20 ms.	Custom made simulator C/C++ and visual studio		Custom data	
Table 4.	A compre	hensi	ve summary	of robust lan	e detection a	nd tracking.				

					Difficult to	The accuracy				
	Data		vanishing	Accurate and	obtain robust	of vanishing		Euture scope		Complex
Sources	Dala		point Method Used	robust Advantages	vanishing Drawbacks	point range	Unmanned	Future	Data .	Reasonowed
[43]	Simulation	Real	detection	performance	point for	between	"ground vehicle	Prospects with	Custom	Drawisserse
	omaiation	nou	method for	for	detection of	80.9% to	and mobile	different	data	and unclear
			Inverse	unstructured	lane for	93.6% for	robot.	scenarios.		road The complex
			perspective	roads.	unstructured	detection		Enhancing	Data	environment
			mapping		The algeorithm	error is 5%.	Fisheye	the algorithm	obtained	creates
			method is	Quick	dropo duo to	The cross-	dasncam: mertiai	suitable for	by using a	unnecessary
[45]		Y	applied to	detection of	the fluctuation	track error is		complex road	model car	tilt causing
			convert the	lane.	in the lighting	25% lane	nrocessor-based	scenario and	running at	some
			image to		conditions	detection	computer	with less light	a speed of	inaccuracy
			bird's êye		conditions.	time is 11	computeri	conditions.	1 m/s	in lane
			View, Gaussian			algorithm is				detection.
			distribution			tested under				
			random	Provides		different				
			rainsample	better results		illumination				
			consensus	during the	Validation	convention		Need to test		
			used for	presence of	expected to	pectoringneom		Dynamic		
[44]	v		RANSAC),	processes	check_the	is finentward	Software based	selection of	Test	
			makingenethe	isbadawand	accuracy of	basadensthe	analysis	various times	NeWehiclar	
[46]	Y		changeover.	minimal	the lane	comparationd	Custom made	like day night	following	
			THEFEGANDER	illumination of	changing	[†] Ø60Pähd	simulator	lifferent	model.	
			extrastate	comparing	algorithm for	approvides a lathe		different		
			freatheres is f	environment.	heterogeneous	detection		tranic		
			blasedpointfe	vehicle and	environment	accuracyas		scenario		
			parafileters	traffic.		95% , 92 %,				
			arentahic			91% and				
			efficieliacy			90%.				
			remove							
			noise							
			10136.							

Simulation Real Decision- making Need for more process To test the efficiency of the proposed approach under IMDUCE Set 1 Provide Set 1 To test the efficiency of the proposed approach decision To test the efficiency of the proposed approach approach for approach for decision Decision- making The reward efficiency of the proposed approach approach the proposed approach the proposed the proposed the proposed the proposed the proposed the proposed approach the proposed the	Source	Data		Method Lised	Advantages	Drawbacks	Pocult		Future	Data	Reason for
Iz Y Decision- making process Need for more testing to based The reward reward Control approach ageometrics and traffic conditions. P Iz Y approach for approach for making by using by using by surproximator The reward threating approximator The reward threating are used to used to the abset Custom made testing the using by using by using by time. The reward threating approximator Custom made testing the testing the using by using by time. The reward threating approximator Custom made testing threating approximator The reward threating approximator Custom made testing threating threating time. The reward threating approximator Custom made testing threating thr	Jource	Simulation	Real	Method 03eu	Auvanages	Diawbacks	Result	10010300	Prospects	Data	Drawbacks
 Frequent calibration is required for accurate decision making in a complex causionment. Usage of deterministic Reinforcement learning within the mode perfecticity advine for compared to and prediction probabilistic efficiency of compared to mand prediction probabilistic efficiency of compared to the system the moder of the system the model-based approach compared to approach compared to dataset Model-based approach compared to approach compared to different different different and prediction by the system the model-based approach compared to approach compared to dataset Model-based approach compared to approach compared to dataset Model-based approach compared to approach compared to dataset Model-based approach compared to approach compared to dataset Camera qualify pilays any shifted the type of filter used, and the Kalman filter is mostly used for lane tra- mprove the network to occurrence of peterion of the lane In a vision-based system, ning seg of occurrence of peterion of the lane External disturbances like weather conditions, vision of the lane External disturbances like weather conditions, vision of model and using a narrow, too wide, and uncleand and an approach and and arrow. 	طع Some	Y of the key c	bserv	Reinforcement learning- based approach for decision making by using Q- function approximator.	Decision- making process involving reward function comprising yaw rate, yaw acceleration and lane changing time.	Need for more testing to check the efficiency of the approximator function for its suitability under different real-time conditions.	The reward functions are used to learn the lane in a better way.	Custom made simulator	To test the efficiency of the proposed approach under different road geometrics and traffic conditions. Testing the feasibility of the reinforcement learning with fuzzy logic for image input and controller action based on the current situation.	custom	More parameters could be considered for the reward function.
 The algorithm's performance depends on the type of filter used, and the Kalman filter is mostly used for lane tracking the interaction of the lane sensors GPS by using GHz processor betection of the lane knowledge and geometry vector working on image of the lane knowledge and geometry vector working on image a model and improve and artificial 240 × 320 image algorithm. External disturbances likewigather conduction, drop-rationation support capable of algorithm. 	 Free Reii 483 Moo con 	quent calibr nforcement del-based a ditions. Car	ation i learnii approa nera q	s required for ng withilitie m and prediction for the ache complex uality pliays a	r accurate c Usage of deterministic probabilistic prediction of traffic of det an vinicipos tan improve the robustness	iecision maki efficiency of the system ectioner traft ectioner traft t role™noteter	ng in a com Robust decision OUICHIER be compared to the trackethier deterministic probability of collision.	DiexTEABYSIGDIME and carsim. Used real-time setup as etter Choving to a Hyundai-Kia motors K7, OVicing even camera system, re micro auto box II, Delphi tadars, IBEO laser , scanner	nt. void false lar Testing undue esufisterent scenario dif	ne cheterctin dataset (collection fer of data using test vehicle).	The Dalgorithm to be modified for real Virs্যাকাগ্র্যারী for real-time monitoring.
Usage of pixel hierarchy to lina vision-based system, the age smoothing is the hand all an endoted tion and tracking stage, which plays a vit occurrence of betection of inertial performance Machine with 4- increasing systems performance Detection of inertial performance Machine with 4- increasing systems performance, Detection of inertial performance Machine with 4- the lane sensors GPS by using GHz processor Detection of without prior information support capable of the lane knowledge and geometry vector working on image the lane without prior information support capable of the lane knowledge and geometry vector working on image and artificial 240 × 320 image narrow, too wide, and unclear and an emarking, drop-rationaritem performance at 15 frames per algorithm. speed. under different networks on second.	• The	algorithm's	s perfo	rmance depe	ends on the	type of filter i	used, and th	e Kalman filter	is mostly use	ed for lane	e tracking.
Tracking of environmental the image.	 In a incr incr Extended to the incr 	a vision-bas easing syst ernal dĬsturt row, too wid	ed sys ems p bances le, anc	Usage of pixel hierarchy to stem, the age occurrence of differmatings. Detection of the lane s like west using a luncleand and algorithm. Tracking of	Smoothing Detection of the lane without prior knowledge Conditions model and model and speed.	Usage of is then instituted l inertial sensors GPS information and geometry vision upwelit improve in Open UGArithm under different environmental	anemplotectic performance by using support vector y, shandoway a and artificial performance networks on the image.	Dn and tracking Machine with 4- GHz processor capable of working on image undablazzingte@nd 240 × 320 image Ceat 15 frames per second.	Stage, whic To test the efficiency of the algorithmst By Jsing me Kalman filter.	h plays a ^{custom} urb an ces	vital role in Calibration of the SUSENSTO Needs to be maintained.

- Monocular, stereo and infrared cameras have been used to capture images and videos. The algorithm's accuracy depends on the type of camera used, and a stereo camera gives better performance than a monocular camera.
- The lane markers can be occluded by a nearby vehicle while doing overtake.
- There is an abrupt change in illumination as the vehicle gets out of a tunnel. Sudden changes in illumination affect the image quality and drop the system performance.
- The results show that the lane detection and tracking efficiency rate under dry and light rain conditions is near 99% in most scenarios. However, the efficiency of lane marking detection is significantly affected by heavy rain conditions.
- It has been seen that the performance of the system drops due to unclear and degraded lane markings.
- IMU (Inertia measurement unit) and GPS are examples that help to improve RADAR and LIDAR's performance of distance measurement.
- One of the biggest problems with today's ADAS is that changes in environmental and weather conditions have a major effect on the system's performance.

References

- 1. Nilsson, N.J. Shakey the Robot; Sri International Menlo Park: California, CA, USA, 1984.
- 2. Tsugawa, S.; Yatabe, T.; Hirose, T.; Matsumoto, S. An Automobile with Artificial Intelligence. In Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Japan, 20 August 1979.
- 3. Blackman, C.P. The ROVA and MARDI projects. In Proceedings of the IEEE Colloquium on Advanced Robotic Initiatives in the UK, London, UK, 17 April 1991; pp. 5/1–5/3.

- 4. Thorpe, C.; Herbert, M.; Kanade, T.; Shafter, S. Toward autonomous driving: The CMU Navlab. II. Architecture and systems. IEEE Expert. 1991, 6, 44–52.
- 5. Horowitz, R.; Varaiya, P. Control design of an automated highway system. Proc. IEEE 2000, 88, 913–925.
- Pomerleau, D.A.; Jochem, T. Rapidly Adapting Machine Vision for Automated Vehicle Steering. IEEE Expert. 1996, 11, 19–27.
- 7. Parent, M. Advanced Urban Transport: Automation Is on the Way. Intell. Syst. IEEE 2007, 22, 9-11.
- Lari, A.Z.; Douma, F.; Onyiah, I. Self-Driving Vehicles and Policy Implications: Current Status of Autonomous Vehicle Development and Minnesota Policy Implications. Minn. J. Law Sci. Technol. 2015, 16, 735.
- Urmson, C. Green Lights for Our Self-Driving Vehicle Prototypes. Available online: https://blog.google/alphabet/selfdriving-vehicle-prototypes-on-road/ (accessed on 30 September 2021).
- 10. Campisi, T.; Severino, A.; Al-Rashid, M.A.; Pau, G. The Development of the Smart Cities in the Connected and Autonomous Vehicles (CAVs) Era: From Mobility Patterns to Scaling in Cities. Infrastructures 2021, 6, 100.
- 11. Severino, A.; Curto, S.; Barberi, S.; Arena, F.; Pau, G. Autonomous Vehicles: An Analysis both on Their Distinctiveness and the Potential Impact on Urban Transport Systems. Appl. Sci. 2021, 11, 3604.
- 12. Aly, M. Real time Detection of Lane Markers in Urban Streets. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12.
- 13. Bar Hillel, A.; Lerner, R.; Levi, D.; Raz, G. Recent progress in road and lane detection: A survey. Mach. Vis. Appl. 2014, 25, 727–745.
- Ying, Z.; Li, G.; Zang, X.; Wang, R.; Wang, W. A Novel Shadow-Free Feature Extractor for Real-Time Road Detection. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016.
- Jothilashimi, S.; Gudivada, V. Machine Learning Based Approach. 2016. Available online: https://www.sciencedirect.com/topics/computer-science/machine-learning-based-approach (accessed on 20 August 2021).
- Zhou, S.; Jiang, Y.; Xi, J.; Gong, J.; Xiong, G.; Chen, H. A novel lane detection based on geometrical model and Gabor filter. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 59– 64.
- 17. Zhao, H.; Teng, Z.; Kim, H.; Kang, D. Annealed Particle Filter Algorithm Used for Lane Detection and Tracking. J. Autom. Control Eng. 2013, 1, 31–35.
- Paula, M.B.; Jung, C.R. Real-Time Detection and Classification of Road Lane Markings. In Proceedings of the 2013 XXVI Conference on Graphics, Patterns and Images, Arequipa, Peru, 5–8 August 2013.
- 19. Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path toward Autonomous Vehicles. In IEEE Consumer Electronics Magazine; IEEE: Eindhoven, The Netherlands, 2018; Volume 7, pp. 18–25.
- Kuo, C.Y.; Lu, Y.R.; Yang, S.M. On the Image Sensor Processing for Lane Detection and Control in Vehicle Lane Keeping Systems. Sensors 2019, 19, 1665.
- 21. Kang, C.M.; Lee, S.H.; Kee, S.C.; Chung, C.C. Kinematics-based Fault-tolerant Techniques: Lane Prediction for an Autonomous Lane Keeping System. Int. J. Control Autom. Syst. 2018, 16, 1293–1302.
- Borkar, A.; Hayes, M.; Smith, M.T. Robust lane detection and tracking with ransac and Kalman filter. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3261–3264.
- 23. Sun, Y.; Li, J.; Sun, Z. Multi-Stage Hough Space Calculation for Lane Markings Detection via IMU and Vision Fusion. Sensors 2019, 19, 2305.
- 24. Lu, J.; Ming Yang, M.; Wang, H.; Zhang, B. Vision-based real-time road detection in urban traffic, Proc. SPIE 4666. In Real-Time Imaging VI; SPIE: Bellingham, WA, USA, 2002.
- 25. Zhang, X.; Shi, Z. Study on lane boundary detection in night scene. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, 3–5 June 2009; pp. 538–541.
- Borkar, A.; Hayes, M.; Smith, M.T.; Pankanti, S. A layered approach to robust lane detection at night. In Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 51–57.
- 27. Priyadharshini, P.; Niketha, P.; Saantha Lakshmi, K.; Sharmila, S.; Divya, R. Advances in Vision based Lane Detection Algorithm Based on Reliable Lane Markings. In Proceedings of the 2019 5th International Conference on Advanced

Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 880–885.

- 28. Hong, G.-S.; Kim, B.-G.; Dorra, D.P.; Roy, P.P. A Survey of Real-time Road Detection Techniques Using Visual Color Sensor. J. Multimed. Inf. Syst. 2018, 5, 9–14.
- Park, H. Implementation of Lane Detection Algorithm for Self-driving Vehicles Using Tensor Flow. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing; Springer: Cham, Switzerland, 2018; pp. 438–447.
- 30. El Hajjouji, I.; Mars, S.; Asrih, Z.; Mourabit, A.E. A novel FPGA implementation of Hough Transform for straight lane detection. Eng. Sci. Technol. Int. J. 2020, 23, 274–280.
- 31. Samadzadegan, F.; Sarafraz, A.; Tabibi, M. Automatic Lane Detection in Image Sequences for Vision-based Navigation Purposes. ISPRS Image Eng. Vis. Metrol. 2006. Available online: https://www.semanticscholar.org/paper/Automatic-Lane-Detection-in-Image-Sequences-for-Samadzadegan-Sarafraz/55f0683190eb6cb21bf52c5f64b443c6437b38ea (accessed on 12 August 2021).
- 32. Cheng, H.-Y.; Yu, C.-C.; Tseng, C.-C.; Fan, K.-C.; Hwang, J.-N.; Jeng, B.-S. Environment classification and hierarchical lane detection for structured and unstructured roads. Comput. Vis. IET 2010, 4, 37–49.
- 33. Han, J.; Kim, D.; Lee, M.; Sunwoo, M. Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor. Int. J. Automot. Technol. 2014, 15, 611–623.
- Le, M.C.; Phung, S.L.; Bouzerdoum, A. Lane Detection in Unstructured Environments for Autonomous Navigation Systems. In Asian Conference on Computer Vision; Cremers, D., Reid, I., Saito, H., Yang, M.H., Eds.; Springer: Cham, Switzerland, 2015.
- Wang, J.; Ma, H.; Zhang, X.; Liu, X. Detection of Lane Lines on Both Sides of Road Based on Monocular Camera. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1134–1139.
- Yenlaydin, Y.; Schmidt, K.W. Sensor Fusion of a Camera and 2D LIDAR for Lane Detection. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4.
- Kemsaram, N.; Das, A.; Dubbelman, G. An Integrated Framework for Autonomous Driving: Object Detection, Lane Detection, and Free Space Detection. In Proceedings of the 2019 Third World Conference on Smart Trends in Systems Security and Sustainablity (WorldS4), London, UK, 30–31 July 2019; pp. 260–265.
- Lee, C.; Moon, J.-H. Robust Lane Detection and Tracking for Real-Time Applications. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1–6.
- Son, Y.; Lee, E.S.; Kum, D. Robust multi-lane detection and tracking using adaptive threshold and lane classification. Mach. Vis. Appl. 2018, 30, 111–124.
- 40. Li, Q.; Zhou, J.; Li, B.; Guo, Y.; Xiao, J. Robust Lane-Detection Method for Low-Speed Environments. Sensors 2018, 18, 4274.
- 41. Son, J.; Yoo, H.; Kim, S.; Sohn, K. Real-time illumination invariant lane detection for lane departure warning system. Expert Syst. Appl. 2014, 42.
- 42. Chae, H.; Jeong, Y.; Kim, S.; Lee, H.; Park, J.; Yi, K. Design and Vehicle Implementation of Autonomous Lane Change Algorithm based on Probabilistic Prediction. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2845–2852.
- Chen, P.R.; Lo, S.Y.; Hang, H.M.; Chan, S.W.; Lin, J.J. Efficient Road Lane Marking Detection with Deep Learning. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5.
- 44. Lu, Z.; Xu, Y.; Shan, X. A lane detection method based on the ridge detector and regional G-RANSAC. Sensors 2019, 19, 4028.
- 45. Bian, Y.; Ding, J.; Hu, M.; Xu, Q.; Wang, J.; Li, K. An Advanced Lane-Keeping Assistance System with Switchable Assistance Modes. IEEE Trans. Intell. Transp. Syst. 2019, 21, 385–396.
- 46. Wang, G.; Hu, J.; Li, Z.; Li, L. Cooperative Lane Changing via Deep Reinforcement Learning. arXiv 2019, arXiv:1906.08662.
- Wang, P.; Chan, C.Y.; de La Fortelle, A. A reinforcement learning based approach for automated lane change maneuvers. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1379–1384.
- 48. Suh, J.; Chae, H.; Yi, K. Stochastic model-predictive control for lane change decision of automated driving vehicles. IEEE Trans. Veh. Technol. 2018, 67, 4771–4782.

49. Gopalan, R.; Hong, T.; Shneier, M.; Chellappa, R. A learning approach towards detection and tracking of lane markings. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1088–1098.

Retrieved from https://encyclopedia.pub/entry/history/show/36255