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Lane detection and tracking are the advanced key features of the advanced driver assistance system. Lane detection is
the process of detecting white lines on the roads. Lane tracking is the process of assisting the vehicle to remain in the
desired path, and it controls the motion model by using previously detected lane markers.
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| 1. Introduction

Autonomous passenger vehicles are a direct implementation of transportation-related autonomous robotics research.
They are also known as self-driving vehicles or driverless vehicles. Shakey the robot (1966-1972) is the first autonomous
mobile robot that has been documented . It was developed by Stanford Research Institute’s Artificial Intelligence Centre
and was capable of detecting the environment, thinking, planning, and navigation. In basic settings, vision-based lane
tracking and obstacle avoidance sparked interest in autonomous vehicles [, In the early 1990s, The Royal Armament
Research and Development Establishment in the United Kingdom created two vehicles for obstacle-free navigation on
and off the road . In the United States, the first operations of autonomous driving in realistic settings dates back to
Carnegie Mellon University’s NavLab in the early 1990s 4. The vehicle developed by NavLab was operated at very low
speeds due to the limited computational power available at the time. Early US research projects also included the
California PATH project, which developed the automated highway . Vehicle steering was automated with manual
longitudinal control in the “No Hands Across America” project 8. In early 2000, CyberCars, one of several European
projects began developing technologies based on automated transport . The announcement of the defence advanced
research projects agency (DARPA) grand challenge in 2003 generated research interest in autonomous cars. Following
that, in 2006, the DARPA urban challenge was performed in a controlled situation with a variety of autonomous and
human-operated vehicles. Since then, many manufactures, including Audi, BMW, Bosch, Ford, GM, Lexus, Mercedes,
Nissan, Tesla, Volkswagen, Volvo and Google, have launched self-driving vehicle projects in collaboration with universities
8, Google’s self-driving car has experimented and travelled 500 thousand kilometres and has begun building prototypes
of its own cars &, A completely autonomous vehicle would be expected to drive to a chosen location without any
expectation of shared control with the driver, including safety-critical tasks.

The performance of lane detection and tracking depends on the well-developed roads and their lane markings, so smart
cities are also a prominent factor in autonomous vehicle research. The idea of a smart city is often linked with an eco-city
or a sustainable city, both of which seek to enhance the quality of municipal services while lowering their costs. Smart
cities’ primary goal is to balance technological innovation with the economic, social, and environmental problems that
tomorrow’s cities face. The greater closeness between government and people is required in smart cities that embrace the
circular economy’s concepts 9. The way materials and goods flow around people and their demands will alter, as will the
structure of cities. Several car manufacturers such as Tesla and Audi have already launched autonomous vehicle
marketing for private use. Soon, society will be influenced by autonomous vehicles’ spread to urban transport systems 14,
The development of smart cities with the introduction of connected and autonomous vehicles could potentially transform
cities and guide long-term urban planning 19,

Autonomous vehicles and Advanced Driver Assistance Systems (ADAS) are predicted to provide a higher degree of
safety and reduce fuel and energy consumption and road traffic emissions. ADAS is implemented for safe and efficient
driving, which has many driver assistance features such as warning drivers about forwarding collision warning or safe lane
change 12, Research shows that most accidents occur because of driver errors, and the ADAS can reduce the accidents
and workload of the driver. If there is a likelihood of an accident, ADAS can take the necessary action to avoid it 131 | ane
departure warning (LDW), which utilizes lane detection and tracking algorithms, is an essential feature of the ADAS. The
LDW warns the driver when a vehicle crosses white lane lines unintentionally and controls the vehicle by bringing it back



into the desired safe path. Three types of approaches for lane detection are usually discussed in the existing literature:
learning-based approach, features-based approach, and model-based approach L4567l NMany challenges and
issues have been highlighted in the literature regarding the LDW systems, such as visibility conditions change, variation in
images, and lane appearance diversity 2. Since different countries have used various lane markers, there is a challenge
for lane detection and tracking to solve the problems.

| 2. Lane Detection and Tracking Algorithms

The feature-based approach uses edges and local visual characteristics of interest, such as gradient, colour, brightness,
texture, orientation, and variations, which are relatively insensitive to road shapes but sensitive to illumination effects. The
model-based approaches apply global road models to fit low levels of features that are more robust against illumination
effects, but they are sensitive to road shapes 13Il14, The geometrics parameters are used in the model-based approach
for lane detection LEIILAIL8] The |earning-based approach consists of two stages: training and classification. The training
process uses previously known errors and system properties to construct a model, e.g., program variables. In addition,
the classification phase applies the training model to the user set of properties and outputs that are more likely to be
correlated with the error ordered by their probability of fault discloser 2. It is then followed up by summary tables (Table
1, Table 2, Table 3 and Table 4) that present the key features of these algorithms and strengths, weaknesses, and future

prospects.

Table 1. A summary of methods used for lane detection and tracking with general remarks.
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image
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Table 2. A comprehensive summary of lane detection and tracking algorithm.
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« The algorithm’s performance depends on the type of filter used, and the Kalman Tilter is mostly used for lane tracking.
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e The majority of researdﬂew?@o%) have used ctestitivnelatasets for research.

particle filter.

* Monocular, stereo and infrared cameras have been used to capture images and videos. The algorithm’s accuracy

depends on the type of camera used, and a stereo camera gives better performance than a monocular camera.

* The lane markers can be occluded by a nearby vehicle while doing overtake.

« There is an abrupt change in illumination as the vehicle gets out of a tunnel. Sudden changes in illumination affect the

image quality and drop the system performance.

« The results show that the lane detection and tracking efficiency rate under dry and light rain conditions is near 99% in

most scenarios. However, the efficiency of lane marking detection is significantly affected by heavy rain conditions.

« It has been seen that the performance of the system drops due to unclear and degraded lane markings.

e IMU (Inertia measurement unit) and GPS are examples that help to improve RADAR and LIDAR'’s performance of

distance measurement.

« One of the biggest problems with today’s ADAS is that changes in environmental and weather conditions have a major

effect on the system’s performance.
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