
Mars Rover Mastcam Images
Subjects: Computer Science, Artificial Intelligence | Geography, Physical

Contributor: Chiman Kwan

The Curiosity rover has landed on Mars since 2012. One of the instruments onboard the rover is a pair of multispectral

cameras known as Mastcams, which act as eyes of the rover.
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1. Introduction

Onboard the Curiosity rover, there are a few important instruments. The laser induced breakdown spectroscopy (LIBS)

instrument, ChemCam, performs rock composition analysis from distances as far as seven meters . Another type of

instrument is the mast cameras (Mastcams). There are two Mastcams . The cameras have nine bands in each with six

of them overlapped. The range of wavelengths covers the blue (445 nanometers) to the short-wave near-infrared (1012

nanometers).

The Mastcams can be seen in Figure 1. The right imager has three times better resolution than the left. As a result, the

right camera is usually for short range image collection and the right is for far field data collection. The various bands of

the two Mastcams are shown in Table 1 and Figure 2. There are a total of nine bands in each Mastcam. One can see

that, except for the RGB bands, the other bands in the left and right images are non-overlapped, meaning that it is

possible to generate a 12-band data cube by fusing the left and right bands. The dotted curves in Figure 2 are known as

the “broadband near-IR cutoff filter”, which has a filter bandwidth (3 dB) of 502 to 678 nm. Its purpose is to help the Bayer

filter in the camera . In a later section, the 12-band cube was used for accurate data clustering and anomaly detection.

Figure 1. The Mars rover—Curiosity, and its onboard instruments . Mastcams are located just below the white box near

the top of the mast.
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Figure 2. Spectral response curves for the left eye (top panel) and the right eye (bottom panel) .

2. Perceptually Lossless Compression for Mastcam Images

Up to now, NASA is still compressing the Mastcam images without loss using JPEG, which is a technology developed

around 1990 . JPEG is computationally efficient. However, it can achieve a compression ratio of at most three times in

the lossless compression mode. In the past two decades, new compression standards, including JPEG-2000 (J2K) ,

X264 , and X265 , were developed. These video codecs can also compress still images. Lossless compression

options are also present in these codecs.

The objective of our recent study  was to perform thorough comparative studies and advocated the importance of using

perceptually lossless compression for NASA’s missions. In particular, in our recent paper , we evaluated five image

codecs, including Daala, X265, X264, J2k, and JPEG.

Our findings are as follows. Details can be found in .

Comparison of different approaches

For the nine-band multispectral Mastcam images, we compared several approaches (principal component analysis

(PCA), split band (SB), video, and two-step). It was observed that the SB approach performed better than others using

actual Mastcam images.

Codec comparisons

In each approach, five codecs were evaluated. In terms of those objective metrics (HVS and HVSm), Daala yielded the

best performance amongst the various codecs. At ten to one compression, more than 5 dBs of improvement was

observed by using Daala as compared to JPEG, which is the default codec by NASA.

Computational complexity

Daala uses discrete cosine transform (DCT) and is more amenable for parallel processing. J2K is based on wavelet

which requires the whole image as input. Although X265 and X264 are also based on DCT, they did not perform well at

ten to one compression in our experiments.

Subjective comparisons

Using visual inspections on RGB images, it was observed that at 10:1 and 20:1 compression, all codecs have almost

no loss. However, at higher compression ratios such as 40 to 1 compression, it was observed that there are noticeable
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color distortions and block artifacts in JPEG, X264, and X265. In contrast, we still observe good compression

performance in Daala and J2K even at 40:1 compression.

3. Debayering for Mastcam Images

The nine bands in each Mastcam camera contain RGB bands. Different from other bands, the RGB bands are collected

by using a Bayer pattern filter, which first came out in 1976 . In the past few decades, many debayering algorithms

were developed . NASA still uses the Malvar-He-Cutler (MHC) algorithm  to demosaic the RGB Mastcam

images. Although MHC was developed in 2004, it is an efficient algorithm that can be easily implemented in the camera’s

control electronics. In , another algorithm known as the directional linear minimum mean square-error estimation

(DLMMSE)  was also compared against the MHC algorithm.

Deep learning has gained popularity since 2012. In , a joint demosaicing and denoising algorithm was proposed. For

the sake of easy referencing, this algorithm can be called DEMOsaic-Net (DEMONET). Two other deep learning-based

algorithms for demosaicing  have been identified as well.

We have several observations on our Mastcam image demosaicing experiments. First, we observe that the MHC

algorithm still generated reasonable performance in Mastcam images even though some recent ones yielded better

performance. Second, we observe that some deep learning algorithms did not always perform well. Only the DEMONET

generated better performance than conventional methods. This shows that the performance of demosaicing algorithms

depends on the applications. Third, we observe that DEMONET performed better than others only for right Mastcam

images. DEMONET has comparable performance to a method know as exploitation of color correlation (ECC)  for the

left Mastcam images.

Due to the fact that there are no ground truth demosaiced images, we adopted an objective blind image quality

assessment metric known as natural image quality evaluator (NIQE). Low NIQE scores mean better performance. Figure
3 shows the NIQE metrics of various methods. One can see that ECC and DEMONET have better performance than

others.

Figure 3. Mean of NIQE scores of demosaiced R, G, and B bands for 16 left images using all methods. MHC is the

default algorithm used by NASA.

From Figure 4, we see obvious color distortions in demosaiced image using bilinear, MHC, AP, LT, LDI-NAT, F3, and

ATMF. One can also see strong zipper artifacts in the images from AFD, AP, DLMMSE, PCSD, LDI-NAT, F3, and ATMF.

There are slight color distortions in the results of ECC and MLRI. Finally, we can observe that the images of DEMONET,

ARI, DRL, and SEM are more perceptually pleasing than others.
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Figure 4. Debayered images for left Mastcam Image 1. MHC is the default algorithm used by NASA.

4. Mastcam Image Enhancement

4.1. Model Based Enhancement

In , we presented an algorithm to improve the left Mastcam images. There are two steps in our approach. First, a pair

of left and right Mastcam bands is used to estimate the point spread function (PSF) using a sparsity-based approach.

Second, the estimated PSF is then applied to improve the other left bands. Preliminary results using real Mastcam images

indicated that the enhancement performance is mixed. In some left images, improvements can be clearly seen, but not so

good results appeared in others.

From Figure 5, we can clearly observe the sharpening effects of the deblurred image (i.e., Figure 5f) compared with the

aligned left images (i.e., Figure 5e). The estimated kernel in Figure 5c, was obtained using a pair of left and right green

bands. We can see better enhancement in Figure 5 for the LR band. However, in some cases in , some performance

degradations were observed.

Figure 5. Image enhancement performance of an LR-pair on sol 0100 taken on 16 November 2012 for L0R filter band

aligned image using PSF estimated from 0G filter bands. (a) Original R0G band; (b) L0G band; (c) estimated PSF using

L0G image in (b) and R0G image in (a); (d) R0R band; (e) L0R band-PSNR = 24.78 dB; (f) enhanced image of (e) using

PSF estimated in (c) PSNR = 30.08 dB.
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The mixed results suggest a new direction for future research, which may involve deep learning techniques for PSF

estimation and robust deblurring.

4.2. Deep Learning Approach

Over the past two decades, a large number of papers was published on the subject of pansharpening, which is the fusion

of a high resolution (HR) panchromatic (pan) image with a low resolution (LR) multispectral image (MSI) .

Recently, we proposed an unsupervised network for image super-resolution (SR) of hyperspectral image (HSI) .

Similar to MSI, HSI has found many applications. The key features of our work in HSI include the following. First, our

proposed algorithm extracts both the spectral and spatial information from LR HSI and HR MSI with two deep learning

networks, which share the same decoder weights, as shown in Figure 6. Second, sum-to-one and sparsity are two

physical constraints of HSI and MSI data representation. Third, our proposed algorithm directly addresses the challenge

of spectral distortion by minimizing the angular difference of these representations.

Figure 6. Simplified architecture of the proposed uSDN.

To generate objective metrics, we used the root mean squared error (RMSE) and spectral angle mapper (SAM), which are

widely used in the image enhancement and pansharpening literature. Smaller values imply better performance.

Figure 7 shows the images of our experiments. One can see that the reconstructed image is comparable to the ground

truth. Here, we only compare the proposed method with coupled nonnegative matrix factorization (CNMF)  which has

been considered a good algorithm. The results in Table 2 show that the proposed approach was able to outperform the

CNMF in two metrics.
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Figure 7. Results of pansharpening for Mars images. Left column (a,c,e) shows the original images; right column (b,d,f) is
the zoomed in view of the blue rectangle areas of the left images. The first row (a,b) shows third band from the left

camera. The second row (c,d) shows the corresponding reconstructed results. The third row (e,f) shows the third band

from the right camera.

5. Stereo Imaging and Disparity Map Generation for Mastcam Images

Mastcam images have been used by OnSight software to create a 3D terrain model of the Mars. The disparity maps

extracted from stereo Mastcam images are important by providing depth information. Some papers  proposed

methods to estimate disparity maps using monocular images. Since the two Mastcam images do not have the same

resolution, a generic disparity map estimation using the original Mastcam images may not take the full potential of the

right Mastcam images that have three times higher image resolution. It will be more beneficial to NASA and other users of

Mastcam images if a high-resolution disparity map can be generated.

Three algorithms were used to improve left camera images. The bicubic interpolation  was used as the baseline

technique. Another method  is an adaptation of the technique in  with pansharpening . Recently, deep

learning-based SR techniques  have been developed.

Here, we include some comparative results. From Figure 8, we observe that the image quality with EDSR and the

pansharpening-based method are better when compared with the original and bicubic images.
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Figure 8. Image enhancements on 0183ML0009930000105284E01_DRCX_0PCT.png. (a) Original left camera image; (b)

bicubic-enhanced left camera image; (c) pansharpening-based method enhanced left camera image; (d) EDSR enhanced

left camera image.

Figure 9 shows the objective NIQE metrics for the various algorithms.

Figure 9. Natural image quality evaluator (NIQE) metric results for enhanced “original left Mastcam images” (scale: ×2) by

the bicubic interpolation, pansharpening-based method, and EDSR.

Figure 10 shows the estimated disparity maps with the three image enhancement methods for Image Pair 6 in .[43]



Figure 10. Disparity map estimations with the three methods and the mask for computing average absolute error. (a)

Ground truth disparity map; (b) disparity map (bicubic interpolation); (c) disparity map (pansharpening-based method); (d)

disparity map (EDSR); (e) mask for computing average absolute error.

6. Anomaly Detection Using Mastcam Images

One important role of Mastcam imagers is to help locate anomalous or interesting rocks so that the rover can go to that

rock and collect some samples for further analysis.

A two-step image alignment approach was introduced in . The performance of the proposed approach was

demonstrated using more than 100 pairs of Mastcam images, selected from over 500,000 images in NASA’s PDS

database. As detailed in , the fused images have improved the performance of anomaly detection and pixel clustering

applications.

Figure 11 illustrates the proposed two-step approach. The first step uses RANSAC (random sample consensus)

technique  for an initial image alignment. SURF features  and SIFT features  are then matched within the image

pair.

Figure 11. A two-step image alignment approach to registering left and right images.

tistical method . Figure 12 shows the results. In each figure, we enlarged one clustering region to showcase the

performance. There are several important observations:
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Figure 12. Clustering results with six classes of an LR-pair on sol 0812 taken on 18 November 2014. (a) Original RGB

right image; (b) original RGB left image; (c) using nine-band right camera MS cube; (d) using twelve-band MS cube after

first registration step with lower (M-34) resolution; (e) using twelve-band MS cube after the second registration step with

lower resolution; (f) using twelve-band MS cube after the second registration step with higher (M-100) resolution; (g) using

pan-sharpened images by band dependent spatial detail (BDSD) ; and (h) using pan-sharpened images by partial

replacement adaptive CS (PRACS) .

Figure 13 displays the anomaly detection results of two LR-pair cases for the three competing methods (global-RX, local-

RX and NRS methods) applied to the original nine-band data captured only by the right Mastcam (second row) and the

five twelve-band fused data counterparts (third to seventh rows).

Figure 13. Comparison of anomaly detection performance of an LR-pair on sol 1138 taken on 10-19-2015. The first row

shows the RGB left and right images; and the second to seventh rows are the anomaly detection results of the six MS

data versions listed in  in which the first, second, and third columns are results of global-RX, local-RX  and NRS 

methods, respectively.

References

1. Wang, W.; Li, S.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Revisiting the Preprocessing Procedures for Elemental
Concentration Estimation based on CHEMCAM LIBS on MARS Rover. In Proceedings of the 6th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–
27 June 2014.

2. Bell, J.F., III; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington,
D.; Kinch, K.M.; et al. The Mars Science Laboratory Curiosity Rover Mast Camera (Mastcam) Instruments: Pre-Flight
and In-Flight Calibration, Validation, and Data Archiving. AGU J. Earth Space Sci. 2018.

3. Kwan, C.; Chou, B.; Bell, J.F., III. Comparison of Deep Learning and Conventional Demosaicing Algorithms for
Mastcam Images. Electronics 2019, 8, 308.

[48]

[49]

[4] [50] [51]



4. Ayhan, B.; Dao, M.; Kwan, C.; Chen, H.; Bell, J.F.; Kidd, R. A Novel Utilization of Image Registration Techniques to
Process Mastcam Images in Mars Rover with Applications to Image Fusion, Pixel Clustering, and Anomaly Detection.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4553–4564.

5. JPEG. Available online: http://en.wikipedia.org/wiki/JPEG (accessed on 30 March 2021).

6. JPEG-2000. Available online: http://en.wikipedia.org/wiki/JPEG_2000 (accessed on 30 March 2021).

7. X264. Available online: http://www.videolan.org/developers/x264.html (accessed on 30 March 2021).

8. X265. Available online: https://www.videolan.org/developers/x265.html (accessed on 30 March 2021).

9. Kwan, C.; Larkin, J. Perceptually Lossless Compression for Mastcam Multispectral Images: A Comparative Study. J.
Signal Inf. Process. 2019, 10, 139–166.

10. Bayer, B.E. Color Imaging Array. U.S. Patent 3971065, 20 July 1976.

11. Li, X.; Gunturk, B.; Zhang, L. Image demosaicing: A systematic survey. In Proceedings of the Visual Communications
and Image Processing 2008, San Jose, CA, USA, 28 January 2008; Volume 6822.

12. Losson, O.; Macaire, L.; Yang, Y. Comparison of color demosaicing methods. Adv. Imaging Electron Phys. Elsevier
2010, 162, 173–265.

13. Kwan, C.; Chou, B.; Kwan, L.M.; Budavari, B. Debayering RGBW color filter arrays: A pansharpening approach. In
Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY,
USA, 19–21 October 2017; pp. 94–100.

14. Kwan, C.; Chou, B. Further Improvement of Debayering Performance of RGBW Color Filter Arrays Using Deep
Learning and Pansharpening Techniques. J. Imaging 2019, 5, 68.

15. Zhang, L.; Wu, X.; Buades, A.; Li, X. Color demosaicking by local directional interpolation and nonlocal adaptive
thresholding. J. Electron. Imaging 2011, 20.

16. Malvar, H.S.; He, L.-W.; Cutler, R. High-quality linear interpolation for demosaciking of color images. In Proceedings of
the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21
May 2004; Volume 3, pp. 485–488.

17. Zhang, L.; Wu, X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image
Process. 2005, 14, 2167–2178.

18. Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. ACM Trans. Graph 2016, 35.

19. Tan, R.; Zhang, K.; Zuo, W.; Zhang, L. Color image demosaicking via deep residual learning. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 793–798.

20. Klatzer, T.; Hammernik, K.; Knobelreiter, P.; Pock, T. Learning joint demosaicing and denoising based on sequential
energy minimization. In Proceedings of the IEEE International Conference on Computational Photography (ICCP),
Evanston, IL, USA, 13–15 May 2016; pp. 1–11.

21. Jaiswal, S.P.; Au, O.C.; Jakhetiya, V.; Yuan, Y.; Yang, H. Exploitation of inter-color correlation for color image
demosaicking. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France,
27–30 October 2014; pp. 1812–1816.

22. Kwan, C.; Dao, M.; Chou, B.; Kwan, L.M.; Ayhan, B. Mastcam Image Enhancement Using Estimated Point Spread
Functions. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New
York, NY, USA, 19–21 October 2017; pp. 186–191.

23. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. Mtf-tailored multiscale fusion of high-resolution ms and pan
imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596.

24. Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of
ms+ pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45.

25. Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3631–3640.

26. Akhtar, N.; Shafait, F.; Mian, A. Hierarchical beta process with Gaussian process prior for hyperspectral image super
resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16
October 2016; pp. 103–120.

27. Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC Press:
Boca Raton, FL, USA, 2007.



28. Qu, Y.; Qi, H.; Kwan, C. Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 2511–2520.

29. Qu, Y.; Qi, H.; Kwan, C. Unsupervised and Unregistered Hyperspectral Image Super-Resolution with Mutual Dirichlet-
Net. arXiv 2019, arXiv:1904.12175.

30. Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral
data fusion. IEEE Trans. Geosci. Remote Sens. 2017, 50, 528–537.

31. Alhashim, I.; Wonka, P. High Quality Monocular Depth Estimation via Transfer Learning. arXiv 2018, arXiv:1812.11941.

32. Poggi, M.; Tosi, F.; Mattoccia, S. Learning monocular depth estimation with unsupervised trinocular assumptions. In
Proceedings of the IEEE International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018.

33. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised monocular depth estimation with left-right consistency. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017.

34. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process.
1981, 29, 1153–1160.

35. Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. Does Multispectral/Hyperspectral Pansharpening Improve the
Performance of Anomaly Detection? In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6130–6133.

36. Kwan, C.; Budavari, B.; Bovik, A.C.; Marchisio, G. Blind Quality Assessment of Fused WorldView-3 Images by Using
the Combinations of Pansharpening and Hypersharpening Paradigms. IEEE Geosci. Remote Sens. Lett. 2017, 1835–
1839.

37. Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.;
Licciardi, G.A.; Simoes, M. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 27–46.

38. Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical
comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 2565–2586.

39. Kwan, C.; Budavari, B.; Dao, M.; Ayhan, B.; Bell, J.F. Pansharpening of Mastcam images. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp.
5117–5120.

40. Dong, C.; Loy, C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings
of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

41. Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate image super-
resolution. arXiv 2018, arXiv:1808.08718.

42. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
1646–1654.

43. Ayhan, B.; Kwan, C. Mastcam Image Resolution Enhancement with Application to Disparity Map Generation for Stereo
Images with Different Resolutions. Sensors 2019, 19, 3526.

44. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK,
2003.

45. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. Comput. Vis. Image Underst.
(CVIU) 2008, 110, 346–359.

46. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.

47. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of data clusters via the gap statistic. J. R. Stat. Soc. B
2001, 63, 411–423.

48. Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE Pan sharpening of very high resolution multispectral images.
IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236.

49. Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial
replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309.

50. Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE
Trans. Acoust. Speech Signal Proc. 1990, 38, 1760–1770.



51. Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest regularized subspace for hyperspectral classification. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 477–489.

Retrieved from https://encyclopedia.pub/entry/history/show/36709


