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Material extrusion additive manufacturing of metal (metal MEX), which is one of the 3D printing processes, has

gained more interests because of its simplicity and economics. Metal MEX process is similar to the conventional

metal injection moulding (MIM) process, consisting of feedstock preparation of metal powder and polymer binders,

layer-by-layer 3D printing (metal MEX) or injection (MIM) to create green parts, debinding to remove the binders

and sintering to create the consolidated metallic parts.

material extrusion  3D printing  fused filament fabrication  metal injection moulding

1. Introduction

From the ISO/ASTM 52900, additive manufacturing (AM), usually known as 3D-printing, is a process of joining

materials to make parts from 3D model data, usually layer by layer, as opposed to subtractive manufacturing and

formative manufacturing methodologies . This process has become increasingly popular for various material

fabrications, such as ceramic, polymer and metal . Many metal AM processes, such as powder bed fusion

(PBF), direct energy deposition (DED) and materials extrusion (MEX) can successfully fabricate various metals,

e.g., stainless steel , titanium alloys , nickel alloys , cobalt  and aluminium

alloys . AM can also provide a high degree of freedom, lightweight design with almost unlimited

shape, complexity and a varied range of sizes depending on the printing process . In addition, the AM parts are

not only limited to prototyping, but can be applied in various technologies, including modelling, pattern-making,

tool-making and end-use parts productions with very high growth rates . Hence, AM parts can be served in

many industries, e.g., biomedical, aerospace and energy applications . Among the several techniques of metal

AM, metal MEX utilises low-cost equipment with simplicity and safety, as neither loose metal powder nor a high-

power source is required when compared to other common metal AM processes, i.e., laser powder bed fusion

(LPBF) and electron beam powder bed fusion (EPBF) . During the last decade, this metal MEX process has

attracted more attention due to the as-mentioned advantages and the familiarities with conventional polymer 3D

printing, which is the metal-fused filament fabrication process (FFF), usually called fused deposition modelling

(FDM). Figure 1 shows the number of publications relating to metal MEX per year and the cumulative number.

[1]

[2][3][4][5]

[6][7][8][9] [10][11][12][13] [14][15][16][17][18] [19][20]

[21][22][23][24][25]

[26]

[27]

[3][28]

[9][29]



Material Extrusion Additive Manufacturing of Metal | Encyclopedia.pub

https://encyclopedia.pub/entry/23676 2/21

Figure 1. Number of publications relating to the metal MEX from 1996 to February 2022. Data from 

.

The nature of metal MEX is very similar to the conventional metal injection moulding (MIM) . The overall

MIM and metal MEX processing steps are presented in Figure 2a,b,d,e and Figure 2a,c,d,e, respectively. The

MIM process starts with the mixing of sinterable metal powder with suitable polymeric binders and then granulating

the metal-binder mixture into feedstock Figure 2a. The feedstock is subsequently injected into a mould to create

the injected part, commonly called a “green part” (Figure 2b). The polymeric binders are then removed by solvent

(optional) and thermal debinding (Figure 2d) before the debound parts are sintered in a controlled atmosphere,

e.g., H , N , Ar or vacuum atmosphere, to densify the parts (Figure 2e). During sintering, necks are formed to bond

between adjacent powder particles, consolidation takes place and voids are closed. This causes shrinkage of the

sintered part, which in theory should be uniform. However, in practice, the uniformity of shrinkage depends on

several factors, e.g., the homogeneity of feedstock and the resultant green parts, geometry, gravity and friction

between the parts and sintering tray. Typical MIM shrinkage lies within the range of 12–20% . Hence,

the mould cavity needs to be oversized to compensate for the shrinkage. After sintering, the density of the MIMed

specimen can reach up to 99% of the theoretical density. Hot isostatic pressing (HIP) can be applied, if high
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mechanical property and density are required. For the metal MEX, instead of forming the green part by the injection

moulding process, it is printed layer by layer (the process in Figure 2b is replaced by that in Figure 2c) with

various forms of feedstock, i.e., granule, bar and filament, depending on the printer. After printing, the subsequent

debinding and sintering steps (Figure 2d,e) may be slightly different from the MIM process due to the differences in

compositions of binders and the metal powder fraction (usually named “solid loading”), metal powder size and its

distribution. The shrinkage of the sintered metal MEX part is generally higher than for MIM parts because the metal

MEX feedstock usually has higher binder content (lower solid loading) than MIM so that the metal MEX feedstock

is printable and can be easily handled. Therefore, dimensions of the CAD model need to be carefully compensated

to acquire the required dimension after sintering. The sintered density and mechanical properties of the metal MEX

part are theoretically lower than those of MIM due to the voids between deposited paths generated during printing

. Thereby, the print strategy, which can generate not only such voids but also deflection and incomplete weld in

polymer 3D-print parts , needs to be carefully controlled for metal MEX before progressing to the

debinding and sintering.

Figure 2. Comparison of material extrusion additive manufacturing of metal (a,c,d,e) and metal injection moulding

(a,b,d,e).

2. Material Extrusion Additive Manufacturing of Metal (Metal
MEX)

In metal MEX, the feedstock composing of metal powder and polymeric binders is heated until the filament is

softened and can be extruded through a printing nozzle. The printed material is then deposited on the printing bed,
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which is heated to increase adhesion between the printed parts and the printing bed so that the 3D part is created

layer-by-layer following the CAD model . This metal MEX process can also fabricate multi-material 3D parts,

when a printer has more than one printing head or feeding system. Depending on the feeding system of the printer,

the metal MEX process can be classified into three types, as presented in Figure 3, which are (a) screw-based, (b)

plunger-based and (c) filament-based types . After printing, the as-printed parts require to be debound and

sintered in a similar manner to those in the MIM processing steps, as presented in Figure 2d,e.

Figure 3. Types of material extrusion additive manufacturing classified by feeding system: (a) screw-based, (b)

plunger-based and (c) filament-based types.

Screw-based MEX (SB)

High quality metal filament and bar feedstocks are still very limited in alloy selection. Hence, screw-based MEX is

currently the most versatile material extrusion system in term of material selection. Screw-based MEX uses the

granulated feedstock in a similar form as MIM, hence all alloys for MIM feedstocks are applicable. The feedstock

will be transported by screw rotation  and simultaneously heated by heating elements to a temperature above

the glass transition temperature of the polymer binder. The softened material will be deposited through the nozzle

in a pattern that follows the CAD design, as presented in Figure 3a. The advantages of this type over the latter two

processes, which are plunger- (Figure 3b) and filament- (Figure 3c) based types are high productivity due to a

continuous filling system and no requirement for an additional processing step for bar or filament preparation. In

addition, high solid loading equivalent to that employed in MIM can be used. This process provides the best

available feedstock filling system, which can continuously feed without interruption during printing, as the feedstock

in the system is replenished. This results in printing time reduction, as neither printing stoppage during feedstock

replenishment nor feedstock re-heating to the printing temperature is mandatory. There is also no need for
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additional equipment for bar or filament preparation and know-how to produce and handle feedstocks, especially

filament feedstock, which is commonly brittle and difficult to handle. The size of the granulated feedstock needs to

be controlled (<5 mm) to obtain stability during printing and reduce printing defects generated by air entrapment

. As reported by Singh et al. , the granule feedstock, sized from 3 to 5 mm, can provide relative sintered

density up to 94% after sintering. Likewise, Lieberwirth et al.  reported that a granule size of 3 mm could be

readily printed, yielding good appearance. Too large granulated feedstock may not be evenly and properly softened

in the feeding system. Too small granulated feedstock may cause blocking at the hopper. Any printed mono-

material green parts with defects or mistakes can be easily re-used by crushing and sieving before feeding back

into the printer hopper, similar to the re-use of MIM injected parts with defects and all runner systems . The

other two types of printing systems need an additional bar or filament preparation step. The stabilisation of the

screw system is still challenging to fabricate the 3D part, as it is difficult to control the flow rate of the material to be

constant due to the trapped air inside the softened material. Moreover, the strength and stability of the printing

system are also required during printing due to the high viscosity of the feedstock. The well-known commercially

available screw-based MEX systems are proposed by AIM3D GmbH with a “ceramic extrusion modelling” system

(CEM)  and Pollen AM, Ltd. With a “pallet additive manufacturing” system (PAM) , in which multi-material

parts, such as both ceramic and metal, can be fabricated by using general powder injection moulding feedstocks.

Figure 4a shows the AIM3D printer and the schematic representing the printing, while Figure 4b shows the

feedstock and the microstructure of the feedstock utilised for the AIM3D printer. Recently, pallet extrusion system

has been introduced by Direct3D, which supplies both a screw-based printer and only a screw-based print head

that can be applied with a suitable 3D printer . In addition, most MIM manufacturers will prefer to use their

current MIM feedstock so that they can use their current debinding and sintering systems. Hence, the

implementation of metal MEX will be easier, smoother, faster and more economical for MIM manufacturers.
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Figure 4. (a) AIM3D printer and the schematic representing the printing and (b) low and high magnification of the

17-4PH stainless steel granulated feedstock utilised for the printer .

Plunger-based MEX (PB)

The plunger-based MEX utilises bar or granulated feedstock to feed to the nozzle of the plunger system. Desktop

Metal, Inc.  proposes the plunger-based system using circular-bar feedstock, called “bound deposition

modelling” (BMD), in which the bar feedstock will be fed by a cartridge into a heated sleeve. The feedstock is then

pushed through the nozzle for layer-by-layer printing by the plunger following the CAD design as presented in

Figure 3b. One of the main advantages of this system is the high material handling ability, which is significantly

easier than the filament feedstock. Besides, the solid loading of the bar feedstock can be higher than the filament-
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based printers and comparable to the MIM feedstock. However, one of the main disadvantages of the plunger-

based system when compared to the screw-based one is the additional step of bar feedstock preparation. The bar

feedstock can be prepared by extruding the mixture of metal powder and polymer binders and cut to size, as

shown in Figure 2a. Furthermore, print discontinuity occurs when the feedstock is required to be replenished. To

overcome this disadvantage, Giberti et al. proposed an in-house developed machine, as shown in Figure 5a,

combining a screw-based to feed the MIM feedstock and plunger system to push the feedstock through the nozzle

. However, at the end of the plunger stroke, the plunger still requires reversing to receive the softened feedstock

from the screw-based plasticiser. Hence, the discontinuity is minimised but remained. As the injection unit is

stationary, the deposited path will be printed on the printing bed of a 5-axes parallel kinematics machine (PKM).

Hence, parts can be printed with minimal support materials. In 2020, Waalkes et al. proposed an in-house plunger-

based printer, as presented in Figure 5b, which can fabricate the 3D part of Ti-6Al-4V using commercial MIM

feedstock . This in-house system successfully fabricates the as-printed parts with a good appearance and high

stability. Moreover, the production cost of the machine is claimed to be close to the open polymer filament-based

systems (5–10 k€) . These in-house developed plunger-based printers provide the ability to use MIM feedstock.

This increases the flexibility in material selection. In addition, there is no need for further feedstock preparation into

filament form.

[36]

[61]

[61]



Material Extrusion Additive Manufacturing of Metal | Encyclopedia.pub

https://encyclopedia.pub/entry/23676 8/21

Figure 5. (a) In-house developed machine and their components with the extrusion unit combining a screw-based

(plasticiser) to feed the feedstock and plunger system to inject the feedstock through the nozzle  and (b) in-

house developed plunger-based printer and their components with the schematic of the extruder unit .

Filament-based MEX (FB)

Filament-based type is the most popularly and widely used metal MEX process. It is known by many terms, such

as “fused deposition modelling” (FDM), first developed by Stratasys, Ltd. (Eden Prairie, MN, USA and Rehovot,

Israel) for polymer ; “fused filament fabrication” (FFF) or “atomic diffusion additive manufacturing” (ADAM)
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proposed by Markforged, Inc., Watertown, MA, USA . At the beginning, this process was usually used for rapid

prototyping; however, it can currently be used for tooling and end-user part fabrication . The filament of

metal MEX composed of the metal powder and polymeric binder is fed by the filament transport system to the

heating element and heated nozzle so that the filament will be softened and extruded to the printing bed layer-by-

layer following the CAD design as illustrated in Figure 3c. The advantages of this filament-based process are

safety, simplicity and familiarity of the process, and its low-cost equipment because the general desktop polymer

3D printer is used with the metal MEX filament. The high volume fraction of metal in the filament results in a high

wear rate of the printing nozzle; hence, a special ruby or hardened steel nozzle should be utilised to produce a

stable flow of the filament, prolong the nozzle life  and reduce contamination. The main disadvantage of this

process is the need for filament production, which requires single/twin screws or plunger extrusion equipment for

filament fabrication , plus special know-how, e.g., the selection of appropriate binder types, suitable mixing

procedure and the filament fabrication technique . The filament properties are very important to the final shape,

size, dimension and properties in both as-printed and as-sintered stages. Appropriate binders must be selected to

provide the desired properties in the filament. The filament should have high strength and stiffness so that the

filament can be driven by the roller or gear without breaking and bulking . The high bonding strength of

the metal powder and binders of the filament can provide strong weldability between deposit paths. In addition, the

filament should have high flexural strength and stiffness so that the filament can be spooled and handled with ease

. The filament will be brittle if too-high solid loading is used . Very careful handling of the filament is needed

with an extra heater to reduce the brittleness of the filament and to reset the memory shape . The filament

must have no porosity, shape consistency and uniform distribution of the metal powder, including as high as

possible of solid loading to minimise shrinkage . The above factors directly influence the printing, debinding and

sintering processes, which can be prone to generate many defects. High quality sintered parts can be achieved if

these factors and the processes are correctly controlled. Examples of commercially available filaments are

Ultrafuse 316L  by BASF SE , Filamet  by Virtual foundry  and 316L metal filament by Anycubic , which

provide high-quality metal filaments, together with the suggested suitable range of processing parameters. The

cross section of commercially available filament by BASF (Figure 6a), Virtual foundry (Figure 6b), including the

filament specially developed for MetalX by Markforded, Inc. (Figure 6b) shows high fraction of the metal powder. It

is noted that the Ultrafuse 316L filament uses polymer skin (Figure 6a) to case the filament to increase the

flexibility of the filament , while the Filamet and Anycubic filament use binder with high flexibility and lower solid

loading .
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Figure 6. Cross-sectional view of the commercial filaments—(a) Ultrafuse by BASF , showing polymer skin

surrounding mixing of polymer and metal powder, (b) 316L metal filament by Virtual foundry  and (c) 17-4PH

stainless steel filament for MetalX system by Markforged, Inc .
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