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Automatic modulation classification (AMC) is a vital process in wireless communication systems that is

fundamentally a classification problem. It is employed to automatically determine the type of modulation of a

received signal. Deep learning (DL) methods have gained popularity in addressing the problem of modulation

classification, as they automatically learn the features without needing technical expertise.

automatic modulation classification  deep neural network  residual learning

1. Introduction

In wireless communication, the complexity of the environment and the signals is rapidly increasing. A vital

phenomenon in ad-hoc networks such as cognitive radio (CR) and software-defined radio (SDR) is automatic

modulation classification (AMC) . In modulation, information is typically communicated between the transmitter

and receiver in a standard communication environment , whereas devices in CR transmitters autonomously

choose modulation schemes based on external contexts, and CR receivers should independently verify signal

modulation patterns . AMC assists the CR receivers in identifying the type of modulation selected by the

transmitter. In SDR, AMC is applied to quickly respond to diverse and evolving communication networks whilst

avoiding protocols overhead. The current technology in a cognitive jamming scenario involves the automatic

discovery of the modulation schemes utilized by both favorable and adversarial signals .

While military technology has always been a driving force behind the advancement of AMC, commercial

applications such as interference detection and spectrum sensing are also widespread . The development of the

5th generation of telecommunication networks (5G), which is predicted to result in the proliferation of end devices

in use and congestion of the electromagnetic spectrum, has sparked renewed interest in AMC. Without knowing

the system parameters, AMC is used to determine the transmitter’s modulation configuration from the received

signal as shown in Figure 1.
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Figure 1. Block diagram of a communication link with automatic modulation classification.

Signal, noise, and channel models have a significant effect on the classification result. Therefore, they are all used

to develop AMC techniques. When the expected signal model or noise model does not fit the actual signal or noise,

the corresponding classification model fails to perform adequately. A more sophisticated model may be expected to

mostly reduce the gap with the real scenario. There are many unspecified parameters to evaluate, which leads to

greater estimation mistakes, and the additional computing complexity cannot be overlooked. Furthermore, certain

situations, such as molecular communications may not have manageable predictive methods, severely decreasing

the classification accuracy of the typical design classifier . Due to computing complexity, they have been

restricted in their relevancy to a wider range of fields. Data-driven AMC methods have been designed to address

these complexities .

2. A Lightweight Deep Learning Model for Automatic
Modulation Classification Using Residual Learning and
Squeeze–Excitation Blocks

2.1. Likelihood-Based (LB) Method

AMC is treated as a hypothesis-testing problem in the LB method. The algorithm based on the LB method can be

efficient from a Bayesian perspective, and it is beneficial for reducing the likelihood of a hypothesis problem

occurring. High computational complexity often affects accurate decisions, which can be difficult to obtain in actual

systems. The LB method can reduce the probability of misclassification and can obtain the best classification

accuracy, as such methods maximize the chance of correct classification with perfect channel situations.

Furthermore, in real-world scenarios, uncertainty factors must be considered, and the likelihood function is

ineffective in handling any unknown parameters. The unknown parameters problem is replaced with the essential

component of their probability density function (PDF) in the average-likelihood ratio test (ALRT) . However, as the

number of missing factors grow, the likelihood function in ALRT becomes more sophisticated, resulting in a

significant processing cost. To solve the complexity, the generalized likelihood ratio test (GLRT) was developed.

The parameters in GLRT are estimated by using a maximum likelihood (ML) estimator . This biased classifier

affects the performance of nested modulations such as 16-quadrature amplitude modulation (QAM) and 64-QAM.

The hybrid likelihood ratio test (HLRT) improves the performance of the likelihood function with respect to the
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unknown function. It first evaluates the likelihood of the data symbols as discrete random variables, consistently

allocated across the alphabet set, and considers the carrier phase as a predetermined variable . Since this

method requires prior information about the signal, including its carrier frequency and other channel parameters, its

implementation becomes difficult in the presence of complex and unknown parameters. Despite their ability to

provide optimal solutions, they may not be appropriate in practical scenarios .

2.2. Feature-Based (FB) Method

FB methods, which are widely used for AMC, extract features from the received signal and feed them into a

classification system . They are found to outperform LB techniques in terms of reliability and computational

overhead. To detect the modulation type of a signal, FB methods have been employed on a set of data description

features, which assist in formulating decisions . There are two steps to the creation of FB modulation

classification method: preprocessing and a classification algorithm.

Preprocessing: This stage is responsible for extracting features from the received signal. Different features can

be chosen based on various circumstances and predictions. Certain immediate aspects of the signal, such as

instantaneous signal power, frequency, phase, amplitude, and so on, are retrieved during the feature extraction

phase . As a result, these characteristics transform the raw data into patterns that must be learned by the

classifier for the purpose of recognition.

Classification Algorithm: The classification algorithm utilizes the features from the preprocessor as an input, and

outputs the modulation type of the signal for each received signal.

The FB approach creates a higher-dimensional environment in which signal characteristics can be isolated using a

hyperplane . Among the most commonly utilized features in FB approaches, high-order cumulants , wavelet

transform , and cyclostationary features  are principally employed for feature extraction. In noncooperative

circumstances, these statistical characteristics are often combined to improve reliability. A classifier processes and

compares the obtained statistical properties of the incoming signal, with preset limits, to identify the modulation

type in the classifier step.

Comparison between Likelihood-Based and Feature-Based Method

In contemporary research, several classifiers have been presented, notably maximum likelihood , distribution

test-based , and machine learning-based classifiers. Notably, the efficiency and statistical complexity of each

classifier are routinely measured. For every realistic implementation, choosing the proper classifier is crucial . In

contrast to the processes employed in likelihood-based AMC, statistical methods for feature extraction are often

particularly less complex in terms of processing cost. Due to their intrinsic low complexity and the use of blind

modulation schemes, feature-based techniques are increasingly popular for real-life scenarios, which demand no

extra information about the signal or channel . Therefore, owing to the aforementioned features, these two types

of classifiers have dominated AMC for decades. In comparison, the LB classifier can find the best solution using

Bayes sense to reduce the likelihood of incorrect classification. The FB method can achieve high reliability for
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recognizing basic modulation types such as BPSK and QPSK . Moreover, for assessing unknown values, LB

classifications possess a high computing complexity , whilst the FB classifier’s efficacy is significantly impacted

by feature cohesion. Conventional AMC innovation has always relied on likelihood- and feature-based techniques.

It seeks to develop more effective features and classifiers . With the advancement of artificial intelligence in the

past few decades, deeper learning-based algorithms have been utilized to tackle the AMC issues presented in 

. With the data presented in , a convolutional neural network (CNN) for AMC and investigated structure

optimal depth was proposed. Furthermore, in , a data-driven model based on LSTM was presented to overcome

the AMC problem. A design composed of LSTM and CNN modules was considered as a solution for achieving high

efficiency of AMC with different SNR regions. AMC approaches usually depend on feature extraction to reduce the

complexity of signal data and classification accuracy . In modern times, deep learning has made significant

progress in a variety of applications, including resource allocation in LoRaWAN , edge computing , control

science , voice recognition , and bioinformatics . The capability of DL to easily discover features, from

data in an end-to-end process, is partly responsible for the achievement of conceptual tasks due to its superior

feature extraction and classification abilities. Therefore, the DL-based AMC technique can accurately analyze and

detect modulated signals .

2.3. Deep Learning Techniques for Automatic Modulation Classification

Model-driven approaches mostly choose their features based on experience . FB techniques lose certain

original details whilst extracting some statistical features. This affects the performance of categorization, especially

in low-SNR circumstances, while the DL-based network may extract highly representative features from the source

signals and incorporate feature extraction as part of the classifier training process. Consequently, it surpasses

conventional FB approaches in terms of classification performance .

For AMC problems, the first DL technique was used in , which consisted of a convolutional neural network

(CNN) based on synthetic datasets for model learning, testing, and analysis (known as RML2016.10A and

RML2016.04C). Due to the simplistic architecture of the convolution design, the accuracy rate was 71.30%71.30%

and 87.4%87.4% with RML2016.10A and RML2016.04C, respectively. The datasets RML2016.10A and

RML2016.04C will be referred to as 𝐷1  and 𝐷2, respectively. The authors of  utilized the dataset of  to

demonstrate the response of a convolutional neural network to temporal radio signals with complex values. The

researchers evaluated the efficacy of radio modulation categorization by comparing naively learned features with

expert feature-based approaches that are commonly used today. The study results revealed that the former

approach had superior performance. The researchers evaluated the efficacy of radio modulation categorization by

comparing naively learned features with expert feature-based approaches that are commonly used today. The

study results revealed that the former approach had superior performance.

The work in  used the 𝐷1 dataset from , and an 80%80% classification accuracy was achieved through the

implementation of a signal distortion correction module (CM). Recently, in DL-based methods, researchers have

utilized residual learning techniques that were used for the feature-based approach initially introduced by He et al.

. The residual structure was employed to overcome the degradation issue and extract discriminative features to
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achieve sufficient performance. For AMC, the residual learning-based method was deployed in . The ResNet

structure was employed to identify the modulation formats for AMC, in which they yield moderate classification

accuracy without any network structure adjustments. The authors of  proposed an innovative shared model

based on a deep learning network using CNN-LSTM utilizing two expert features: wideband frequency modulation

(WBFM) and quadrature amplitude modulation (QAM), to improve classification accuracy, and achieved better

accuracy with 𝐷1. In , a DL-based technique for categorizing signal modulation was proposed. The researchers

compared multiple DL algorithms by leveraging insights from previous studies and utilizing a diverse set of layers

to enhance the existing designs. They employed various techniques such as convolutional layers, dropout layers,

and Gaussian noise layers to reduce overfitting and modify the scenario. Additionally, they improved accuracy

while minimizing compute time by using a reduced number of filters in each layer. In , three efficient models for

AMC—a convolutional long short-term deep neural network (CLDNN), a long short-term memory neural network

(LSTM), and a deep residual network (ResNet)—were investigated, with the goal of ensuring high accuracy whilst

shortening the time needed in order to train the systems.
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