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The concept of chaos has been applied extensively in various applications with the growth of nonlinear dynamical

systems that are highly sensitive to the initial state. Chaos-based algorithms can generate a large number of

different search points in a short time, which can help explore the optimization area more efficiently and quickly

than traditional optimization algorithms. In this regard, a new method named CSCSO is proposed to improve the

shortcomings of the recently proposed Sand Cat Swarm Optimization (SCSO) algorithm with this chaos theory.

This algorithm has also been tested in engineering and social science-based constrained problems. Especially in

social sciences, it solves basic problems with this kind of artificial intelligence-based mechanism instead of

traditional methods such as questionnaires and fieldresearch.

Chaotic Sand Cat Swarm Optimization  chaotic maps  constrained problems

hybrid metaheuristics  multidisciplinary problems

1. Introduction

In general, the most common and economical process for finding the best value (minimum or maximum) in

systems and problems with challenging design is optimization . As the size of the problem increases, so does

its complexity, and therefore it becomes more difficult to solve . Similar problems are called Nondeterministic

Polynomial time (NP-hard) problems . Such problems are common in real-world problems that have various

objectives and constraints. Metaheuristic algorithms are the most popular and efficient of the different approaches

to solving such problems. These algorithms can be efficient in solving nonlinear and non−differentiable design

problems. These algorithms are stochastic-based optimization methods that prove their adequacy to solve many

design problems in different fields . Therefore, it is possible to develop different algorithms for various problems.

Moreover, according to the No Free Lunch (NFL)  theorem, not every algorithm can best solve all problems, so it

is important to build up new algorithms.

It will be helpful to briefly examine the properties of metaheuristic algorithms for the motivation of the study and the

explanation of the main issue. The metaheuristic algorithms consist of two important phases: exploration and

exploitation . In the exploration phase, it provides numerous population-based parameters to explore the search

space. In the second stage, it is tried to obtain the optimum solution from the existing search space, which can be

global or local. Slow convergence and high computation time are unacceptable, although it is by nature not to

reach a one-step solution. In these phases, search agents try to seek solutions and catch what they find. In this
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behavior circulation, the most critical issue is that the processes in these two phases and the transitions between

phases are balanced. However, it should be noted that some algorithms can be unstable, converge slowly, and fail

to go outside the local sometimes or in some problems. In this case, new strategies can be proposed to solve

these limitations and/or improve the performance of current algorithms. Examples of these strategies are

parameter tuning, elitism, chaos, and hybrid strategies . The concept of chaos, which is one of the most

effective approaches, and this strategy is planned to be used in the Sand Cat Swarm Optimization (SCSO)

algorithm . The performance of this algorithm is degraded by some complex and constrained multidisciplinary

problems. Moreover, transitions between exploration and exploitation in the SCSO are sometimes slow; based on

this, there may be slow convergence. Briefly, the main gaps of the SCSO algorithm are sometimes the problems of

low search consistency, local optimum trap, inefficiency search, and low population diversity. Accordingly, it is

planned to eliminate these problems with a chaos strategy. The concept of chaos has been applied extensively in

various applications with the growth of nonlinear dynamical systems that are highly sensitive to the initial state.

Chaos-based algorithms can generate a large number of different search points in a short time, which can help

explore the optimization area more efficiently and quickly than traditional optimization algorithms.

Metaheuristic algorithms try to be effective in various engineering optimization processes by using chaotic maps

based on the concept of chaos with random and regular features. According to , as the initial population

diversity increases, it becomes possible for the algorithm to escape from the local optimum trap and prevent

premature convergence. On the other hand, in another study , it was found that the application of the chaotic

component in optimization is a performance-enhancing factor in many algorithms.

2. The Analysis of Chaos-Based Metaheuristic Methods

The metaheuristic algorithms are broadly divided into four main categories: evolutionary, physics-based, human

behavior, and swarm intelligence algorithms . It is worth noting that there are also hybrid methods consisting of

these four main categories. In evolution-based algorithms, the biological behavior of different systems is taken into

account. One of the famous algorithms in this category is the Genetic Algorithm (GA) ; it is based on Darwin’s

theory. Among the studies in this category, Refs.  are recent studies that can be given as examples.

Physics-based algorithms are the category that exhibits random behavior inspired by the laws of physics in nature.

Some of the studies in this category are presented in . Algorithms in the third category are those inspired

by the social behavior of humans. Some studies can be cited as examples in this category . This category

is expected to become widespread by incorporating more and more social sciences in the future . In particular, it

should be emphasized that there are multivariate dynamic problems in social sciences, and in solving these

problems, these algorithms expected to be used frequently, such as artificial intelligence and machine learning .

The last category is Swarm Intelligence (SI) algorithms, which have received a lot of attention recently by

researchers. The SI is also defined as the collective behavior of a decentralized or self−organizing system . This

approach consists of a large number of members with limited intelligence who interact with each other based on

simple principles. Many studies have been performed in this category . The hybrid algorithms can be

presented for more efficient solutions to some global and/or specific problems. Considering that there are difficult
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and complex problems faced in our real world, it is inevitable that such algorithms will become widespread. In

accordance with this purpose, they are looking for better solutions by combining the pros of the metaheuristic

algorithms under consideration. Hybrid methods generally either present different existing metaheuristic algorithms

as a single new algorithm or make improvements to existing algorithms. Recently, out−of−the−box hybrid models

realize the concept of chaos by adapting them to metaheuristic algorithms. Some examples are listed in .

A generalized version of these classifications is presented in Figure 1. Its wide-ranging metaheuristic approach is

used today for a variety of real problems, ranging from engineering to intelligent systems . More

examples of studies in these categories  are referred

to in this figure.

Figure 1. Generalized classification of metaheuristic algorithms 

.

In , a hybrid chaos-based algorithm was proposed, called Broyden–Fletcher–Goldfarb–Shanno algorithm

(Chaos−BFGS). BFGS is a quasi−Newton method for local optimization devised. Methods based on Newton’s

model have a fast convergence rate and high efficiency, while optimization results are based on selected initial

points. The authors introduced pseudo-randomness and disorder by adding chaotic behavior to the relevant

algorithm. In , researchers proposed a new metaheuristic based on chaotic strategies to improve the

performance of power distribution systems. In this algorithm, called Modified Symbiotic Organisms Search

(MSOS), they tried to solve the constraints of the economic dispatch system of the relevant system. In this study,

they helped the algorithm to find a global optimum solution with a superior convergence rate by applying different

logistic chaos maps. Similarly, in , the researchers were able to significantly improve the performance of the Big

Bang–Big Crunch (BBBC)  algorithm with three different chaos maps and five unique chaotic-based strategies.

In , the author tried to improve the performance of the Cuckoo Search Algorithm (CSA) by incorporating ten

chaotic maps. They claimed to improve the performance of their algorithm in terms of quality solutions and

convergence behaviors, based on their results in 27 benchmarking problems. In another study , ten specialized

chaotic maps were applied to the Grey Wolf Optimization (GWO) algorithm. The authors claim that the algorithm

they propose has acceptable performance in the global optimum finding and convergence rate for constrained
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problems, based on their results. In this regard, the results were compared with the standard GWO. In a study ,

the authors used augmenting chaotic maps for improving the performance of the Krill Herd Optimizer (KHO)  in

terms of computational time and convergence rate. This conclusion was reached after encountering the standard

KHO and a few other algorithms. In another study , chaos theory was used to find the local optimum solution

and solve slow convergence problems of the GA. In this study, the proposed chaotic GA demonstrated successful

performance in the optimum design of critical hydroelectric systems.

In another study , the failure of the Dolphin Swarm Algorithm (DSA)  in some cases, such as incomplete

solution and entrapment in local optima, was discussed. To solve these problems, the authors augmented eight

chaotic logistic maps. Their outcomes have shown a significant improvement. The authors claim that their

proposed algorithm achieved improvements in the convergence rate, along with the elimination of the above

problems, by comparing their results with the standard DSA. The Chaos Ant Colony Algorithm (CACA) was

proposed in . In this study, efficient tool path, motion, and handling were estimated. The results show that pocket

milling can be optimized with effective tool trajectories with the help of CACA.
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