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Multiple sequence alignment (MSA) stands as a critical tool for understanding the evolutionary and functional relationships

among biological sequences. Obtaining an exact solution for MSA, termed exact-MSA, is a significant challenge due to

the combinatorial nature of the problem. Using the dynamic programming technique to solve MSA is recognized as a

highly computationally complex algorithm. To cope with the computational demands of MSA, parallel computing offers the

potential for significant speedup in MSA. 
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1. Introduction

Sequence alignment (SA) refers to the process of arranging and comparing biological sequences, such as DNA, RNA,

and proteins, with the ability to reveal meaningful information about the similarities and differences among them. SA is one

of the fundamental steps in most genomic analyses . The classification of sequence alignment techniques encompasses

two fundamental distinctions: global versus local alignment and pairwise versus multiple alignment. Global alignment

algorithms, such as the Needleman–Wunsch algorithm, align sequences from the beginning to the end . By contrast, the

local sequence alignment is used to compare specific regions and to find contiguous regions of high similarity, such as

that performed by the the Smith–Waterman algorithm . The main two types of sequence alignment are also performed in

two ways: the pairwise sequence alignment (PSA)  and the multiple sequence alignment (MSA) . PSA involves the

comparison of two sequences to identify regions of similarity and dissimilarity, while MSA extends the comparison to more

than two sequences, identifying conserved regions and variations across a set of sequences.

The dynamic programming technique  provides an efficient computational approach for optimizing alignment scores by

breaking down complex problems into smaller overlapping subproblems . Common dynamic programming algorithms for

pairwise sequence alignment include the Needleman–Wunsch algorithm, employed for global alignment, and the Smith–

Waterman algorithm, utilized for local alignment. Dynamic programming extends its utility to multiple sequence alignment

algorithms, such as the progressive and iterative methods . Aligning N sequences using dynamic programming is an

NP-Hard problem  that stems from the complexity of considering all possible combinations and alignments among the

N sequences. To address complexity challenges in MSA, heuristic methods  and approximation algorithms  are

employed in practice for the MSA of a large number of sequences. In addition to these algorithms, applying parallel

computing techniques offers a promising avenue to mitigate the computational demands associated with MSA .

2. Pairwise Sequence Alignment (PSA)

Pairwise sequence alignment (PSA) is considered an important tool for aligning biological sequences such as DNA and

protein sequences . Haque et al.  presented a comprehensive overview of both local and global pairwise sequence

alignment algorithms. They also included an identification of the techniques utilized in these algorithms and discussed

their respective advantages and limitations. In , Edgar et al. distinguished between the main three methods used to

align sequences: sequence–sequence methods (like BLAST), profile–sequence methods (like PSI-BLAST), and profile–

profile methods (like CLUSTALW). The survey in  reviewed the wide range of aligning algorithms and tools developed

to assess the quality of the aligned sequences. In , bacterial DNA sequences were aligned using pairwise alignment

and dynamic programming. Table 1 shows an overview of the most well-known approaches utilized for PSA.

Table 1. Pairwise sequence alignment techniques.
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# Technique Approach Reference

1 Needleman–Wunsch Dynamic Programming

2 Smith–Waterman Dynamic Programming

3 Gotoh’s Algorithm Dynamic Programming

4 FASTA Algorithm Heuristic

5 BLAST Algorithm Heuristic

6 EMBOSS Software Toolkit

7 Parasail Toolkit/Library

7 Minimap2 Toolkit/Program

9 ASCA-PSO Heuristic

8 WFA-GPU Toolkit

Several studies have aimed to accelerate the performance and the accuracy of the tools used in sequence alignment by

using several parallelization techniques . For example, Fakirah et al.  utilized a diagonal traversing approach to

enhance the Needleman–Wunsch algorithm by utilizing the iterations used to fill the scoring matrix. Balhaf et al. 

enhanced the Levenshtein edit distance algorithm’s performance by using the diagonal traversing approach, and the

performance was enhanced using both CPU and GPU. Jararweh et al.  accelerated the Levenshtein and Damerau

algorithms by using parallel implementation on a GPU. Jararweh et al. showed that using unified memory resulted in the

best performance. Shehab et al.  enhanced the performance of multiple pairwise alignments in protein sequences by

utilizing a hybrid CPU-GPU implementation. In , Puig et al. utilized a GPU (graphics processing unit) to compute exact

gap-affine alignments based on the wavefront alignment (WFA) algorithm. They showed that the proposed tool is up to

29× faster than other GPU implementations.

3. Multiple Sequence Alignment

Numerous studies have employed various techniques to address the challenge of multiple sequence alignments (MSAs)

. One widely adopted technique is progressive alignment . The progressive alignment method initially starts with

pairwise alignments and progressively builds an MSA alignment through a series of pairwise alignments, producing

accurate results for moderately sized sequence sets . In addition to the progressive methods, iterative approaches

have also played a crucial role in improving the accuracy of MSA . Iterative methods generally refine alignments

applying successive cycles of alignment improvement. Iterative refinement involves realigning sequences based on the

initial solution and gradually converging toward a more accurate alignment. Iterative techniques often outperform

progressive methods in terms of alignment accuracy, especially in cases where sequences are more distant . Lupyan

et al. proposed a hybrid algorithm that combined the progressive and iterative algorithms for MSA. The hybrid approach

provided a significant advancement compared to earlier methods involving a notable decrease in computational cost.

In addition to progressive and iterative methods, several studies focus on the utilization of metaheuristics techniques for

performing MSA . Ali et al.  reviewed the landscape of metaheuristics in bioinformatics highlighting various

metaheuristic approaches, including tabu search , simulated annealing , and particle swarm optimization ,

showcasing their applications in computational biology problems and MSA. Hatzou et al.  provided valuable insights

centered on the heuristic-based progress of MSA methods. Similarly, Chowdhury et al.  offered an overview of MSA

methods with a focus on the multi-objective approach. In contrast, Vega et al.  provided a comparative analysis of

different formulations of multi-objective metaheuristics for MSA. In Table 2, the researchers present some well-known

tools for MSA and show the general techniques used for each.

Table 2. Multiple sequence alignment tools with techniques.

# Technique Approach Heuristics Ref.

1 Recursive MAGUS Divide-and-Conquer Alignment Guide Tree

2 ClipKIT Trimming Strategies IQ-TREE Hill-Climbing

3 Kalign Progressive Alignment Guide Tree
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# Technique Approach Heuristics Ref.

4 ProbCons Probabilistic Consistency Probabilistic Modeling

5 MUSCLE Progressive Alignment Guide Tree

6 MAFFT Progressive Alignment Guide Tree

7 T-Coffee Various Various

8 DIALIGN Local Multiple Alignment Pairwise Alignments

9 CLUSTAL W Progressive Alignment Guide Tree

Limited studies have been directed towards seeking exact solutions for multiple sequence alignment due to the time

complexity associated with obtaining the optimal results. Mojbak et al.  proposed an exact-MSA approach using

forward dynamic programming. Also, in the comprehensive exploration of exact solutions, Hosseininasab et al. 

proposed a framework employing a dynamic programming approach to construct a multivalued decision diagram,

representing all PSAs. The synchronization of PSAs with the proposed decision diagram effectively incorporates modeling

the MSA problem within polynomial space complexity. Moreover, Domínguez  delves into statistical and biological

concepts employed in the MSAProbs-MPI tool to complete the alignments where high-performance computing techniques

are employed for alignment acceleration. Additionally, Ju et al.  introduced an end-to-end deep neural network and

called it CopulaNe, designed to directly estimate residue co-evolution from MSA, representing a cutting-edge approach in

the finding of exact solutions for MSA.

In addition to the previously mentioned approaches, several parallelization strategies have been employed to tackle the

challenges associated with MSA . Some of these strategies focus on the parallelization of dynamic programming

algorithms, such as in . Other strategies aim to parallelize the progressive alignment . Several studies focus on the

parallelization of heuristic algorithms, such as . Recently, many studies utilized GPU acceleration for MSA . The

optimization of parallel MSA is characterized by continuous innovation in algorithmic design and adaptation to emerging

hardware architectures .
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