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Weaning is the most crucial event in commercial pig farms in terms of animal productivity and health. The newly

weaned pig not only transits from milk to a solid and more complex diet, but is also subjected to additional

stressors including separation from sow and littermates, co-mingling with unknown pigs, adaptation to new

environmental settings, and increased pathogen exposure. All these stressors result in reduced feed intake, lasting

up to 48 h post-weaning, which is the main driver of the observed gastrointestinal dysfunction, poor performance,

and post-weaning diarrhoea (PWD). Marine polysaccharides from macroalgae and chitin provide an interesting

source of novel bio-actives and are interesting group of natural dietary supplements for use in pig nutrition due to

their prebiotic, antibacterial, and immunomodulatory activities. Hence, they offer great potential as preventatives

and prophylactics in pig diets.

pig  weaning  marine polysaccharides  dietary supplement

1. The Negative Biological Effects Associated with Weaning

Weaning is a critical period in pig husbandry. In the wild, pigs naturally wean at 10–12 weeks of age, which

coincides with the almost complete development and maturation of the gastrointestinal tract (GIT); in contrast,

commercial weaning occurs at 2–4 weeks of age. Commercial weaning induces transient alternations to the

gastrointestinal tract (GIT). These morphological and physiological changes are most likely driven by the post-

weaning reduction in feed intake. As feed intake resumes, the GIT undergoes a period of intestinal maturation .

The villi and crypts that line the epithelium of the small intestine are essential for the digestive and absorptive

processes . Dietary composition has marginal effects on the small intestinal morphology of weaned pigs, with the

level of feed intake found to be the most important determinant of mucosal function and integrity . Food

deprivation leads to a lack of luminal stimulation. This results in a rapid decrease in villous height . Villous height

is at its lowest after 2–5 days post-weaning, resulting in a reduced ability to absorb nutrients . Villous height starts

to recover in feed deprived piglets 4 days after feeding is restarted and can take more than 10 days to completely

recover . The villus surface area is also altered in the post-weaning period. Pre-weaning, villi are dense and

finger-like, while the weaning transition changes the villi into predominantly smooth, compacted, and tongue-

shaped villi . As well as the intestinal morphology being affected by weaning, gastrointestinal functionality is also

impaired as indicated by the reduction in brush border enzymes such as lactase, sucrase, and peptidases, and the

disturbances in nutrient absorption and electrolyte secretion with the latter also contributing to the weaning-

associated diarrhoea . The resulting maldigestion and malabsorption leads to the weight loss observed during

the first 4–5 days post-weaning .
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A compromised intestinal barrier characterised by increased paracellular permeability, reduced transepithelial

resistance, and reduced gene expression of tight junction proteins is additionally observed at the immediate post-

weaning period and may lead to overstimulation of the immune system due to the increased presence of dietary

and microbial antigens . The activation of the immune system further contributes to the reduced intestinal

barrier function and diarrhoea in newly weaned pigs. Several studies have reported infiltration of immune cells such

as lymphocytes, macrophages, and mast cells in the lamina propria , increased expression of genes

encoding for inflammatory cytokines such as tumour necrosis factor (TNF), interferon gamma (INFG), and

interleukins  IL1B and  IL6  , and activation of several pathways associated with immune responses  in the

small and large intestine of pigs in the immediate post-weaning period.

The composition of the GIT microbiota is also altered in response to the weaning stress, diet alteration, reduced

feed intake, and gastrointestinal dysfunction. Several studies have investigated the weaning-induced compositional

and functional changes in the GIT microbiota of pigs . Lactobacillus spp. are amongst the intestinal

bacterial populations that are frequently monitored during the post-weaning period due to their high abundance in

pigs and known beneficial effects. A significant reduction of this population, as well as shifts of the dominant

strains, has been observed in the ileum of pigs post-weaning . The decrease in the  Lactobacillus  spp. is

transient, as seen in the ileum and faeces of weaned pigs and is followed by restoration or even an increase in its

numbers and dominance of strains that utilise complex carbohydrates .  Enterobacteriaceae  is an

important indicator of dysbiosis in the faeces of newly weaned pigs, as an increase in the counts of this bacterial

family was associated with higher incidence of diarrhoea . Nevertheless, the increase

in Enterobacteriaceae relative abundance is transient under normal circumstances, as this bacterial population and

its members (Escherichia/Shigella) are minor constituents of the maturing GIT microbiota . The

reduction in Bacteroides spp. and increase in Prevotella spp. is another common change in the faecal microbiota of

weaned pigs that is probably associated with the transition from milk mono- and oligo-saccharides to plant-derived

polysaccharides . Weaning-induced gastrointestinal dysbiosis is considered a key contributor to the

development of diarrhoea and predisposes pigs to PWD . The most common causative agent of PWD is the α-

haemolytic Gram-negative enterotoxigenic E. coli (ETEC) that colonises the epithelium of the small intestine via F4

(ab, ac, ad) and F18 (ab, ac) fimbriae and non-fimbrial AIDA (adhesin involved in diffuse adhesion) . 

2. Traditional and Alternative Dietary Interventions

Dietary interventions are one strategy with which to prevent or alleviate dysbiosis and its associated impact on the

growth and health of pigs. A diverse range of feed additives have been studied as preventatives and prophylactics

in pig diets. An array of natural compounds have been investigated as alternative strategies to AGPs and ZnO such

as yeast β-glucans , mannan-oligosaccharides , prebiotics such as galacto-oligosaccharides , organic

acids , probiotics , spray dried plasma proteins , exogenous feed enzymes , and essential oils .

These compounds can support the microbial composition, health, and growth performance of pigs. However, there

is only a limited number of compounds that result in a similar improvement in growth performance and reduced the

occurrence of diarrhoea compared to in-feed AGP or ZnO. Therefore, there is still a need to identify natural bio-
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actives with growth promoting and immunomodulatory properties as suitable substitutes to AGPs and ZnO. It is

also critical to explore the underlying mechanisms when evaluating the functional properties of feed ingredients

and feed additives . Key components of GIT function that should be considered include absorptive capacity (villi

architecture and nutrient transporters expression), digestive capacity (activity of pancreatic and brush-border

enzymes), physical and chemical barriers, microbial load, microbial diversity, and immune function.

3. Marine Polysaccharides

Marine macroalgae, broadly classified into brown, red, and green seaweeds, are a major source of novel bio-

actives with potential benefits on animal health. While they consist of ≥94% water, they also contain varying

concentrations of non-digestible polysaccharides, polyphenols, minerals, vitamins, proteins, and lipids . Of

particular interest are the non-digestible polysaccharides of brown seaweeds, namely alginate and fucoidan which,

along with cellulose, are structural components of the algal cell wall, while laminarin and mannitol are located in the

cytoplasm . Feeding intact or whole macroalgae has attracted considerable interest in recent years as

potential substitutes for AGP and ZnO to maintain performance and health in weaner pigs, due to their prebiotic,

antibacterial, antioxidative, and immunomodulatory activities .

The supplementation with crude seaweed extracts containing both laminarin and fucoidan have been shown to be

effective in post-weaned pig diets , however, the supplementation of intact seaweed has been less

successful in the immediate post-weaned pig diet, as presented in  Table 1. In a recent large commercial

experiment in Denmark, Satessa et al.  could not obtain any positive effects of intact macroalgae on piglet

health and performance. Previous studies with intact brown macroalgae also reported similar results in weaned

pigs  or reduced performance when fed to finishing pigs . The application of the intact macroalgae in a dry

meal, means that the nutritional value of the final product is dependent on the seaweed variety, season of harvest,

geographic location, and environmental and climatic conditions, all of which influence chemical composition 

. The extraction methodologies and conditions used to extract polysaccharides (i.e., combination of

parameters such as solvent, pH, temperature, time, solvent to seaweed ratio) are also an important contributing

factor to the quantitative, structural, and functional variability of seaweed polysaccharides .

Chitin is a natural polysaccharide found in the exoskeletons of arthropods. Chitosan is formed by partial

deacetylation of chitin under alkaline conditions or by enzymatic hydrolysis. Chitosan has exhibited antimicrobial

activities against many bacteria, fungi, and yeasts, with a high killing rate for both gram-positive and gram-negative

bacteria and low toxicity towards mammalian cells, indicating its suitability as an antimicrobial supplement . The

antimicrobial activities of chitosan are dependent on several factors including pH, the species of the

microorganism, pKa, molecular weight, degree of deacetylation, and the presence or absence of metal cations .

This review will focus on the feeding of laminarin, fucoidan, chitosan, and chitosan derivatives and their ability to

alter the composition of the GIT microbiota, inhibit intestinal pathogens, modulate the immune system, and

enhance performance and health in the post-weaned pig.
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Table 1. Effect of seaweed supplement on growth performae, diarrhoea scores and parameters of gastro intestinal

functionality.

Pig Age Dietary
Supplement Dose

Time and
Duration of

Supplementation

Effect on
Growth

Performance
and Diarrhoea

Scores

Effect on Parameters
of GIT Functionality

and Health
Ref.

Weaned pigs

24-day-
old

Laminarin
(Laminaria spp.)

Fucoidan
(Laminaria spp.)

Laminarin +
Fucoidan

300
mg/kg
240

mg/kg
300

mg/kg
+ 240
mg/kg

After weaning for
21 days

+ ADG and
G:F in pigs fed
laminarin-
supplemented
diets
+ ADG in pigs
fed with diet
supplemented
solely with
fucoidan
(interaction)
− diarrhoea
score in pigs
fed laminarin-
supplemented
diets

− faecal E. coli in pigs
fed laminarin-
supplemented diets
+
faecal Lactobacillus spp.
in pigs fed with diet
supplemented solely with
fucoidan (interaction)

24-day-
old

Laminarin
(Laminaria spp.)

Fucoidan
(Laminaria spp.)

Laminarin +
Fucoidan

150
or

300
mg/kg
240

mg/kg
150
or

300
mg/kg
+ 240
mg/kg

After weaning for
35 days

+ ADG in pigs
fed 300 mg/kg
laminarin-
supplemented
diets
+ G:F in pigs
fed with diet
supplemented
solely with
300 mg/kg
laminarin or
fucoidan
(interaction)
− FS in pigs
fed 150 or 300
mg/kg
laminarin-
supplemented
diets and in
pigs fed with
diet
supplemented
solely with

+
faecal Lactobacillus spp.
in pigs fed fucoidan-
supplemented diets
0 faecal E.
coli, Bifidobacterium spp.
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Pig Age Dietary
Supplement Dose

Time and
Duration of

Supplementation

Effect on
Growth

Performance
and Diarrhoea

Scores

Effect on Parameters
of GIT Functionality

and Health
Ref.

fucoidan
(interaction)

28-day-
old

65% laminarin-
rich extract

(Laminaria spp.)

300
mg/kg

After weaning for
14 days

+ ADG, ADFI
0 diarrhoea
score

+ VH in duodenum and
jejunum and CD in
jejunum
− Enterobacteriaceae in
caecum
+ Lactobacillus spp. in
colon
+ butyrate in colon
+ gene expression of
nutrient transporters in
small intestine and colon
− gene expression of
tight junction proteins,
mucins and immune
markers in small
intestine and colon

35-day-
old

Dried seaweed
(Ocean Harvest

Technology)
containing
laminarin,
fucoidan,
alginate,
mannitol,

fucoxanthin and
rhamnose
sulphate.

1500
mg/kg

After weaning for
52 days

0 ADG, ADFI,
G:F
0 diarrhoea
score

− VH in jejunum

35-day-
old

Dried sea weed
(Ascophyllum

nodosum)

2.5
g/kg

5 g/kg
10

g/kg

After weaning for
28 days

− ADG ND

Finisher
pigs

Dried seaweed
extract

(Ascophyllum
nodosum)
containing
laminarin,
fucoidan,
alginate,
mannitol,

3 g/kg
6 g/kg
9 g/kg

After weaning for
28 days

− ADG
0 ADFI, G:F

ND
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+: increase; 0: no effect; −: reduction; N/D: not determined; ADG = average daily gain, ADFI = average daily feed

intake, G:F = gain to feed ratio, VH = villous; height, CD = crypt depth, AEEC = attaching effacing E coli; GIT =

gastrointestinal tract.

4. Laminarin

Laminarins are low molecular weight β-glucans consisting of a linear backbone of (1,3)-β-linked glucopyranose

residues with a varying level of β-(1,6)-branching  (Figure 1). Water solubility of laminarin depends on the level

of branching . Laminarin accumulates in the vacuoles of algal cells during summer and early autumn to support

survival and growth during the winter and early spring when it reaches its lowest levels . In terms of

laminarin quantity, Laminaria hyperborea and L. digitata were reported to have the highest laminarin concentration

among the different seaweed species, indicating that Laminaria spp. are an important source of this polysaccharide

.

Figure 1. Reported chemical structure of laminarin extracted from Laminaria digitata  .

Pig Age Dietary
Supplement Dose

Time and
Duration of

Supplementation

Effect on
Growth

Performance
and Diarrhoea

Scores

Effect on Parameters
of GIT Functionality

and Health
Ref.

fucoxanthin and
rhamnose
sulphate.

28-day-
old

65% laminarin-
rich extract

(Laminaria spp.)

300
mg/kg

After weaning for
14 days

+ ADG, ADFI
0 diarrhoea
score

− abundance of OTUs
assigned to
Enterobacteriaceae
+ abundance of OTUs
assigned to the genus
Prevotella

24-day-
old

Laminarin
(Laminaria spp.)

Fucoidan
(Laminaria spp.)

Laminarin +
Fucoidan

300
mg/kg
240

mg/kg
300

mg/kg
+ 240
mg/kg

After weaning for
8 days

ND

− Enterobacteriaceae
population in pigs offer
fucoidan (interaction).
− AEEC strains in pigs
offer laminarin
(interaction).
+ VH and VH:CD ratio in
pigs offered laminarin or
fucoidan (interaction).
− IL-6, IL-17A and IL-1b
mRNA expression in pigs
offered laminarin

24-day-
old

Laminarin
(Laminaria spp.)

 
After weaning for

8 days

+ ADG and
ADFI
− diarrhoea
score

ND

24-day-
old

Laminarin
(Laminaria spp.)

0
mg/kg
240

mg/kg
ZnO

After weaning for
32 days

+ ADG and
G:F, similar
effect to ZnO

+ digestibility of GE
+ the expression of
glucose transporters in
small intestine compared
with the basal diet.

24-day-
old

44% fucoidan-
rich extract

(Laminaria spp.)

0
mg/kg
125

mg/kg
250

mg/kg

After weaning for
14 days

− diarrhoea
score
0 ADG, ADFI
and G:F

0 effect on VH
− abundance of
Prevotella and
Lachnospiraceae
+ the abundance of
Helicobacter
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4.1. Antibacterial Activity

Crude laminarin-rich seaweed extracts (Laminaria  spp.) have exhibited antibacterial activity against  E.

coli,  S.  Typhimurium,  Listeria monocytogenes, and  Staphylococcus aureus  in vitro . Similar results were

observed with purified laminarin (Laminaria  spp.,  Eisenia  spp.,  Cystoseira  spp.) from various seaweed species,

while it is also evident that laminarin is more effective against Gram-negative than Gram-positive bacteria .

Dietary supplementation with crude or highly purified laminarin-rich extracts (Laminaria  spp.)

reduced Enterobacteriaceae   and/or the subpopulation of attaching-effacing Escherichia coli (AEEC)  in

the caecum and colon of weaned pigs. Similar reductions in ileal and colonic coliform counts were observed in

growing  and finishing pigs  supplemented with highly purified laminarin-rich extracts (Laminaria spp.).

In a dextran sodium sulphate (DSS)-induced colitis porcine model, the DSS-challenged pigs supplemented with

crude  or highly purified  laminarin-rich extracts (Laminaria  spp.) had reduced Escherichia/Shigella  relative

abundance and colonic Enterobacteriaceae counts, respectively, compared to DSS-challenged control pigs.

4.2. Prebiotic Activity

In weaned and grower pig studies, dietary supplementation with crude or highly purified laminarin-rich extracts

(Laminaria  spp.) led to increases and compositional changes in the colonic and faecal  Lactobacillus  spp.

populations . An in-depth investigation of the effects of a crude laminarin-rich extract (Laminaria spp.) on

the composition of the colonic and caecal microbiota of weaned pigs showed an increased relative abundance

in  Prevotella  spp. while its family,  Prevotellaceae, was positively correlated with improved pig performance .

Supplementation with crude or highly purified laminarin-rich extracts (Laminaria spp.) also altered the short chain

fatty acid (SCFA) production and profile of the gastrointestinal microbiota in pigs , particularly altering

butyrate production.

4.3. Immunomodulatory Activity

Dietary supplementation with crude or highly purified laminarin-rich extracts (Laminaria  spp.) exerted an anti-

inflammatory effect on the small intestine and colon of weaned and growing pigs evidenced by the decreased

expression of proinflammatory cytokine genes including tumour necrosis factor (TNF), transforming growth factor

beta 1 (TGFB1), interleukins  IL1A,  IL1B,  IL6,  IL17A, and  IL10, pattern recognition receptors such as toll-like

receptor 2 (TLR2) and Dectin-1/C-type lectin domain containing 7A (CLEC7A), and the transcription factor nuclear

factor kappa B subunit 1 (NFKB1) . An immunosuppressive effect due to laminarin was also observed in

the colon, more specifically related to the down-regulation of genes associated with the Th17 pathway . The

influence of dietary supplementation with highly purified laminarin-rich extracts on the immune response of the

porcine intestinal tissue towards a bacterial stimulus was evaluated in an ex vivo LPS challenge model. Here, the

colonic tissue of pigs supplemented with highly purified laminarin-rich extracts (Laminaria  spp.) had higher

expression of  IL6  and C-X-C motif chemokine ligand 8 (CXCL8) following the LPS challenge, indicating that

laminarin might provide improved protection against intestinal bacterial infection via enhanced activation of the

immune system .
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4.4. Effects of Laminarin-Rich Extracts on Pig GIT Functionality

Several studies have demonstrated the benefits of laminarin-rich extracts as a dietary supplement during the post-

weaning period in pigs, as presented in Table 1. Performance parameters such as final bodyweight, daily gain,

feed intake, and gain to feed ratio were positively influenced in weaned pigs supplemented with crude or highly

purified laminarin-rich extracts (Laminaria spp.) . Furthermore, dietary supplementation with crude or

highly purified laminarin-rich extracts (Laminaria  spp.) led to improved villus architecture in the small intestine,

mainly characterised by increased villus height (VH) and VH: Crypt depth (CD) ratio and increased expression of

nutrient transporter genes, indicating enhanced nutrient digestion and absorption, both of which are impaired in the

immediate post-weaning period . Diarrhoea, a common characteristic of weaning stress, was reduced by

dietary supplementation with highly purified laminarin-rich extracts (Laminaria spp.) as indicated by the lower faecal

scores in the supplemented weaned pigs . In a recent study, Rattigan et al.  showed that under hygienic

sanitary conditions, laminarin-rich extracts reduced the incidence of diarrhoea in weaned pigs, while under

unsanitary conditions, laminarin reduced the incidence of diarrhoea and improved daily gains. Therefore, laminarin-

rich extracts seem to be a promising dietary alternative to antibiotic growth promoters and ZnO to alleviate PWD.
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