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The effectiveness and performance of the robot’s manipulative actions in any field of operation primarily depend on the

dynamic response of its internal drive system. Power converters play a pivotal role in robotics by facilitating efficient

energy conversion and management. 
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1. Introduction

Industrial robots have a wide range of applications across various industries, including tasks like handling, painting,

assembly, welding and more . In fields like autonomous vehicles, machine-learning algorithms process sensor data

to make real-time decisions, enabling vehicles to navigate and respond intelligently to complex environments . In

healthcare, robots equipped with AI can assist in surgeries, diagnose illnesses and even provide emotional support to

patients . Manufacturing processes are streamlined through AI-driven robotics that optimize production lines and

adapt to changing demands .

The integration of AI and machine learning with robotics also enhance the development of human–robot collaboration.

Robots can understand and adapt to human behavior, making them safer and more intuitive to work alongside. The

effectiveness and performance of the robot’s manipulative actions in any field of operation primarily depend on the

dynamic response of its internal drive system . This internal drive system has several impacts on the environment,

depending on its design, efficiency and energy source. This concept encompasses the idea of robots being able to adapt,

improve and learn from their interactions with their environment, tasks and humans.The control and conversion of

electrical energy is responsible for highly efficient robotic systems such as when a robot performs a mix of high-energy

and low-energy tasks; learning-based control can allocate energy resources dynamically . It can optimize power

distribution to different actuators based on the priority of tasks. They aim to optimize the efficiency of energy transfer from

the power source to the actuators. This is particularly important in robotics, where energy efficiency translates to longer

battery life, reduced heat generation and overall better performance .

2. Advanced Power Converters in Robotics

Power converters play a pivotal role in robotics by facilitating efficient energy conversion and management . In this

section, the significance of power converters in robotics is discussed, as well as the various types utilized, recent

technological advancements and case studies, highlighting their influence on robotic performance and energy efficiency.

Figure 1 illustrates the schematic representation of the robotic system’s partitioning, shedding light on the essential

components that collectively enable the robot’s operation.

2.1. Role of Power Converters in Robotics

In the dynamic landscape of robotics, where energy-efficient operation is predominant, power converters serve as the

bridge between energy sources and the electrical demands of robotic subsystems . The role of power converters

encompasses several key aspects:

Voltage Regulation: Robotic systems incorporate components with diverse voltage requirements. Power converters

provide efficient voltage regulation, ensuring that sensors, microcontrollers and other components receive the

appropriate voltage levels. This not only prevents potential damage due to overvoltage but also maximizes the

efficiency of these components .

Current Management: Motors and actuators, crucial for robotic motion and manipulation, often require varying current

levels . Power converters enable precise current control, allowing dynamic adjustment to match the specific

[1][2][3]

[4][5][6]

[7][8][9]

[10][11]

[12][13]

[14][15][16]

[17][18]

[16][19]

[14][20]

[19][21]

[22]



demands of each task. This adaptability results in optimized motor performance and enhanced control accuracy .

Waveform Shaping: Certain robotic components require specific waveform characteristics, such as sinusoidal signals

for AC motors. Power converters facilitate waveform shaping, converting DC power to AC with the desired frequency

and amplitude, thereby enabling precise control over motor behavior .

Energy Efficiency: By minimizing energy losses during conversion and distribution, power converters contribute

significantly to overall energy efficiency in robotic systems. Efficient power conversion reduces wasted energy as heat,

leading to prolonged operational times and reduced battery replacements .

Figure 1. Schematic Representation of Robotic System Partitioning, highlighting the integration of Power Supplies,

Converters, Control Box and Sensing Systems for the Robot’s Operation.

2.2. Types of Power Converters in Robotics

The complex landscape of robotic applications necessitates a spectrum of power-converter types tailored to specific

demands. Figure 2 presents an overview of the power-converter technologies that find applications across various robotic

systems.

2.2.1. DC–DC Converters

DC–DC converters are pivotal in robotics, providing voltage step-up or step-down capabilities. For instance, in battery-

powered robots, where the available voltage decreases as the battery discharges, DC–DC converters maintain stable

voltage levels for critical components. Additionally, as robots integrate sensors and actuators with distinct voltage

requirements, these converters ensure compatibility across the system .

2.2.2. DC–AC Converters

In robotics, DC–AC converters or inverters play a central role in converting DC power from batteries to AC power for

motor-driven systems . Advanced inverter technologies, including advanced modulation schemes like sinusoidal pulse

width modulation (SPWM), enable precise control over AC motor characteristics, such as torque, speed and position. This

level of control enhances robotic locomotion, manipulation and even aerial operations .

2.2.3. AC–DC Converters

AC–DC converters or rectifiers are essential for robotic systems that require power input from alternating current (AC)

sources . These converters not only rectify AC power to DC for internal use but also allow robots to draw power directly

from AC grids. Charging stations for electric robots, as well as industrial robots operating in environments with readily

available AC power, benefit from AC–DC converters.

[23]

[24][25]

[14][19]

[26]

[27]

[28]

[29]



Figure 2. Power Converters for Diverse Robotic Applications.

2.2.4. Resonant Converters

Resonant converters utilize resonant components to achieve efficient power conversion with reduced switching losses.

This feature makes them valuable for wireless power-transfer applications within robotics, enabling energy delivery

without physical connections . Resonant converters are employed in scenarios like charging robotic devices over short

distances or even wirelessly powering sensors in remote locations .

2.2.5. Multi-Level Converters

Robotic systems often demand power converters that can handle high voltages while minimizing harmonic distortion.

Multi-level converters achieve this by generating stepped voltage waveforms, reducing stress on components and

improving overall system efficiency . Applications include high-power robotic arms, where precise motion control

requires efficient and high-voltage power conversion.

2.2.6. Soft-Switching Converters

Soft-switching converters focus on reducing switching losses during power conversion. These converters utilize

techniques like Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) to minimize stress on semiconductor

devices, leading to improved efficiency and reduced electromagnetic interference (EMI) . In robotics, soft-switching

converters find use in high-frequency motor drives and precision robotics that demand minimal energy loss and EMI .

2.2.7. Matrix Converters

Matrix converters perform direct AC–AC conversion without intermediate DC links . This feature offers advantages in

terms of efficiency, size and reduced components. In robotics, matrix converters can be applied to variable-speed motor

drives and actuators , facilitating fine-tuned control and efficient power management.

2.2.8. Dual Active Bridge Converters

Dual Active Bridge (DAB) converters provide bidirectional AC–DC conversion, enabling power flow in both directions. This

characteristic suits applications where energy regeneration and grid connection are important, such as grid-tied robotics

or robots operating in dynamic environments where power needs fluctuate .

By understanding and harnessing the capabilities of these advanced power converters, robotics can achieve higher levels

of performance, efficiency and adaptability across a wide range of applications. Table 1 provides a comprehensive

overview of the key advancements in power-converter technologies for robotics, highlighting the benefits they offer and

the specific applications where they find utility. These advancements represent critical milestones in the evolution of

robotic systems, enabling enhanced performance, efficiency and adaptability.

Table 1. Key Advancements in Power-Converter Technologies for Robotics, along with their Benefits and Applications.
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Power Converter Key Features
Voltage

Regulation
Range

Efficiency
Range

Switching
Frequency Robotics Applications

Buck Converter Step-down voltage
conversion

Narrow to
Moderate High Medium to

High
Battery-powered robots,

sensor nodes

Boost Converter Step-up voltage
conversion Moderate High Medium to

High
Energy harvesting,

charging mobile robots

Buck-Boost
Converter 

Bidirectional voltage
conversion Wide High Medium to

High
Battery management,

variable power demands

Resonant
Converter 

Zero-voltage switching,
reduced EMI Wide Moderate to

High
Medium to

High
Wireless power transfer,

contactless charging

Multi-level
Converter 

Reduced harmonics,
high voltage capability Wide High Medium to

High
High-power robotic arms,

electric vehicles

Matrix Converter Bi-directional AC–AC
conversion Wide High Medium to

High
Variable-speed motor

drives, robotic actuators

Soft-Switching
Converters 

Minimal switching
losses

Moderate to
Wide High High High-frequency motor

drives, precision robotics

Dual Active Bridge
Converter 

Bidirectional AC–DC
conversion Moderate High Medium to

High
Grid-tied robotics,

energy-efficient actuators

2.3. Advancements in Power-Converter Technologies for Robotics

Robotic systems are witnessing transformative impacts due to advancements in power-converter technologies. Table 2
highlights several significant advancements in power-converter technologies for robotics. These advancements are

tailored to address the unique challenges and opportunities in robotics.

2.3.1. Integration of Wide-Bandgap Semiconductors

Wide-bandgap materials, notably silicon carbide (SiC) and gallium nitride (GaN), have revolutionized power-converter

design. The unique material properties of SiC and GaN enable higher operating temperatures, reduced conduction and

switching losses and faster switching speeds . In robotics, this translates to increased power-converter efficiency,

reduced cooling requirements and improved power density. These benefits are particularly relevant for robots operating in

extreme environments, such as industrial automation, space exploration and search-and-rescue missions .

2.3.2. Enhanced High-Frequency Operation

Robotics often demands compactness and agility. Advancements in high-frequency operation have enabled power

converters to operate at frequencies beyond conventional limits . Higher switching frequencies allow for the

miniaturization of passive components like inductors and capacitors, resulting in more compact converter designs. This is

pivotal in creating lightweight robots that exhibit improved agility, responsiveness and energy efficiency .

Table 2. Advancements in Power-Converter Technologies for Robotics.

Advancement Description Benefits Applications

GaN Transistors High-efficiency, fast-switching
transistors enabling compact

power converters.

Reduced power losses, smaller
form factors, improved thermal

management.

Industrial robots, drones,
electric vehicles.

SiC Devices 
High-temperature, high-power

devices for efficient and reliable
converters.

Higher power handling, reduced
cooling requirements, better

performance in harsh
environments.

Electric propulsion, extreme
environment robotics.

Digital Power
Management 

Real-time parameter adjustment
for adaptable and efficient

converters.

Improved adaptability, energy
efficiency, remote monitoring.

Mobile robots, medical
robots, automation.

Resonant Converter
Topologies 

Reduced switching losses, high
efficiency, low electromagnetic

interference.

Improved efficiency, reduced heat,
less EMI.

Renewable energy, wireless
charging.
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Advancement Description Benefits Applications

Hybrid and
Multilevel

Converters 

Combined topologies for
efficiency and voltage control.

Enhanced efficiency, reduced
distortion, improved voltage

control.

Electric grids, robotic
vehicles, renewables.

Advanced Cooling
Techniques 

Innovative cooling for efficient
operation in confined spaces.

Improved thermal management,
higher power handling, compact

designs.

High Performance
Computing (HPC) clusters,

motor drives, confined
spaces.

Advanced Control
Algorithms 

Precise regulation for changing
conditions and loads.

Enhanced accuracy, better
response, improved stability.

Prosthetics, haptics,
precision control.

Wireless Power
Transfer 

Wireless charging for
convenience and seamless

integration.

Convenience, reduced wear,
seamless integration.

Mobile robotics, drones,
underwater robots.
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