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Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is

also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency

towards aggregation. 
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1. Introduction

The study of amyloids as ordered fibrillar protein aggregates is of great importance for elucidating their role in

human pathologies, especially in neurodegenerative diseases . It is known that, under certain conditions,

most proteins and peptides tend not only to aggregation, but also to form amyloid-like fibrils ; in a particular

case, the formation of amyloids of some proteins can be induced by other amyloidogenic proteins and peptides 

. Currently, interest in the study of amyloids is also associated with the fact that they can be used in various

nano- and bio-technological developments, including as antimicrobial agents against pathogenic microorganisms 

. In recent reviews of scientific articles, the prospects of using antimicrobial peptides in medicine are

discussed , including those acting by the mechanism of directed coaggregation with the target protein due to

the interaction of amyloidogenic sites that constitute the spine of amyloid fibrils . Disruption of the native

structure of the most important bacterial proteins, in particular ribosomal ones, caused by directed aggregation, can

be accompanied by a loss of the functional activity of the protein, which, in turn, can lead to a change in normal

cellular metabolism and the death of bacteria.

The ribosomal S1 protein is the largest bacterial protein of the 30S ribosomal subunit and can perform, in addition

to structural, many other functions, interacting with both RNA and other proteins . It was shown that

amber mutation and knockout of the gene encoding the bS1 protein lead to the death of bacterial cells . The

bS1 protein, which is present only in bacterial cells, contains, depending on the taxonomic affiliation of the

microorganism, from one to six domains of the S1 protein (D1–D6), separated by flexible regions . It is

important that the S1 domain is a structural variant of the oligosaccharide/oligonucleotide-binding fold (OB-fold) 

 and can exhibit amyloidogenic properties, like another analog of the OB-fold, the cold shock domain .

Previously, peptides with amyloidogenic properties and antimicrobial activity against Thermus thermophilus were

synthesized and studied based on the sequences of the S1 domains of the ribosomal S1 protein of the model

organism T. thermophilus .
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P. aeruginosa is a pathogenic bacterium that can cause nosocomial infections , and for which cases of

multiple antibiotic resistance are increasingly being reported . Recently, antimicrobial peptides have been

considered as an alternative to classical antibiotics for the treatment of diseases caused by multidrug-resistant

strains of P. aeruginosa . Information about the amyloidogenic regions in the structure of the ribosomal S1

protein from P. aeruginosa (bPaS1) will allow the development of new antimicrobial peptides that specifically

interact with this target protein and cause its aggregation, which will ultimately lead to disruption of the functioning

of the ribosomal S1 protein and suppress the vital activity of this pathogenic bacteria.

The main contribution to the formation of amyloids is made by amino acid residues, which contribute to a denser

packing of the protein structure . Consequently, protein regions included in the spine of amyloid fibrils are

characterized by high resistance to protease treatment, which is used to determine amyloidogenic regions in

products of limited proteolysis of aggregates .

In the present work, amyloidogenic fragments were identified in the amino acid sequence of bPaS1, using the

programs for searching and predicting amyloidogenic regions FoldAmyloid , Waltz , Pasta 2.0  and

AGGRESCAN , and experimentally by analyzing the products of limited proteolysis of bPaS1 aggregates using

high performance liquid chromatography and mass spectrometry (LC-MS). The tendency to amyloid formation of

peptides synthesized on the basis of amyloidogenic regions of bPaS1 was studied by electron microscopy (EM)

and fluorescence spectroscopy (using thioflavin T (ThT)), which are widely used to detect amyloids .

2. Isolation and Purification of bPaS1

The E. coli strain was obtained, the genetic construct allows us to obtain the recombinant bPaS1 with additional

inserts: an N-terminal sequence with 6 His, which allows the use of affinity chromatography purification; a specific

TEV protease recognition site for cleaving intact bPaS1. Nucleic acids were precipitated with streptomycin sulfate

and the precipitates were removed from protein samples. The degree of purification of bPaS1 preparations was

assessed by electrophoresis of samples under denaturing conditions. The resulting final preparation had a purity of

at least 90%.

3. Prediction and Experimental Determination of bPaS1
Regions Prone to Aggregation

The ability of a protein to aggregate and form amyloid-like fibrils is primarily determined by the presence of

amyloidogenic regions in its structure, which can be predicted using special programs developed for this purpose.

Prediction of amyloidogenic sites for bPaS1 was performed using four programs: FoldAmyloid, Waltz,

AGGRESCAN, and Pasta 2.0 (Figure 1B).
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Figure 1. Schematic representation of the domain organization of bPaS1 (A) and comparison of predicting

amyloidogenic regions using programs with the results of peptide coverage after LC-MS analysis of hydrolysates of

control and experimental (aggregate) protein preparations (B). The peptides identified in the control and

experimental samples, respectively, are underlined in gray and black. The bPaS1 sequence is taken from the

UniProt database (UniProt. Available online: https://www.uniprot.org/uniprot/Q9HZ71 (accessed on 20 January

2021)). The regions of bPaS1, prototype peptide synthesis, are shown black–green color.

Each program predicts at least one region prone to amyloid formation in the bPaS1 sequence. However, the

prediction results differ between different programs as they use different algorithms to find amyloidogenic regions.

Subsequently, an experimental search for protein regions resistant to the action of proteases was carried out in the

course of limited proteolysis and analysis of hydrolysates by LC-MS. In total, 146 significant peptides were found in

the products of limited proteolysis of bPaS1 aggregates. At the same time, only 96 significant peptides were

detected in the control sample without incubation for aggregation. Subsequently, significant peptides identified in

the hydrolysates of control and experimental bPaS1 samples were ranked by length, the longest of them was

compared with the bPaS1 sequence in order to determine the regions most protected from the action of proteases

in aggregates and control preparations (Figure 1).

As shown in Figure 1B, the overall peptide coverage for protein aggregate hydrolysates and controls is similar. At

the same time, additional amino acid sequences for aggregates have been identified that may play a role in the
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formation of associates. LC-MS data were analyzed, and peptides with a length of at least five amino acid residues

were selected (similar to the selection criterion in programs predicting amyloidogenic sequences of at least five

amino acid residues), which are present only in hydrolysates of aggregates and are not observed in control

samples (Table 1).

Table 1. Unique peptides identified as a result of comparing data from LC-MS analysis of hydrolysates of bPaS1

aggregates.

*—The accuracy of molecular weight measurement of 1 ppm (parts per million) corresponds to 0.001 Da for an ion

with a molecular weight of 1000 Da. **—For the PEAKS Studio 7.5 software we used (Bioinformatics Solution Inc.,

Waterloo, ON N2L 6J2, Canada) the value of the function T = –10 lgP, where P is the probability that a false

Peptide Prediction of
Amyloidogenicity

Percentage of
Most Non-

Polar a.a. 
(V,I,F,C,L,A,M),

%

Observed
Mass, Da

Theoretical
Mass, Da

Measurement
Error, ppm *

Molecular
Ion, m/z

Charge
(z)

Value of
the

Function
T **

FEESLK
(9–14 a.a.)

No 0 751.376 751.3752 0.5 376.6951 +2 35.71

AIITGIVVDI
(22–31 a.a.)

AGGRESCAN,
Pasta 2.0,
partially

FoldAmyloid
(23–30 a.a.)

70 1012.618 1012.6168 0.9 507.3162 +2 41.51

VHAGLK
(38–43 a.a.)

Pasta 2.0 50 623.374 623.3755 –1.8 312.6945 +2 17.19

DVNGIR
(123–128 a.a.)

AGGRESCAN 33 672.356 672.3555 0.7 337.1852 +2 32

E (+27.99)
GQQVK ***

(191–196 a.a.)
No 17 715.35 715.35 –0.3 358.6822 +2 16.8

LHITDMAWKR
(218–227 a.a.)

FoldAmyloid,
partially

AGGRESCAN
(218–223 a.a.)

40 1269.666 1269.6652 0.4 635.8401 +2 114.36

ISGTIK
(367–372 a.a.)

partially
AGGRESCAN
(370–372 a.a.)

33 617.375 617.3748 0.7 309.6949 +2 27.5

ITDFGIFIGL
(374–383 a.a.)

AGGRESCAN,
partially

FoldAmyloid
(375–382 a.a.)

60 1094.601 1094.6012 –0.1 548.3078 +2 76.43

ASLHEK
(445–450 a.a.)

No 33 683.361 683.3602 1 342.6877 +2 30.93

[45]
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identification of a peptide in the current search will achieve the same or better conformity score. For peptide

mapping, only peptides for which a T value > 15 were used, which corresponds to the p-criterion < 0.03 . ***—

Mass shift (+27.99) means amino acid post-isolation modification (formylation) at the N-termini for peptide

EGQQVK.

As follows from Table 1, the results of bioinformatic analysis and experimental determination of amyloidogenic

regions in the bPaS1 sequence do not coincide for all protease-resistant peptides found in protein aggregates. At

the same time, for the identified peptides FEESLK, AIITGIVVDI, DVNGIR, LHITDMAWKR, ITDFGIFIGL, ASLHEK,

KQEVESA, the accuracy of molecular weight measurement was no worse than 1.8 ppm, and the T function value

was at least two times higher than the threshold value, which on the whole indicates a high reliability of the

experimental determination. Thus, the bPaS1 regions that overlap with the results of predicting amyloidogenicity by

at least two programs, or are identified only in the products of limited proteolysis of bPaS1 aggregates, were used

as prototypes for the synthesis of peptides: AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL and LHITDMAWKR (Figure

1B). Interestingly, the local distribution of non-polar amino acid residues, especially V, I, F, C, can be used to

assess the propensity of a peptide to form amyloid structures . The AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL

fragments are characterized by a high percentage of nonpolar amino acid residues (70%, 70%, and 60%,

respectively), in contrast to the LHITDMAWKR peptide (40%).

The bPaS1 regions, which are theoretically predicted to be amyloidogenic and experimentally resistant to the

action of proteases, are of interest for further study and discussion of the prospects for using antimicrobial peptides

acting on the basis of directed coaggregation in the development of antimicrobial peptides.

4. Electron Microscopic Images of Aggregates

Recombinant bPaS1 was isolated, purified and analyzed using the EM method. According to EM data (Figure 2),

bPaS1 under conditions of 50 mM TrisHCl, pH 8.0; 100 mM NaCl; 10 mM MgCl ; 5 mM β-mercaptoethanol forms

disordered aggregates. That is, as in the case of the recombinant protein bS1 from T. thermophilus , bPaS1

does not form fibrils. However, it should be noted that bPaS1, in contrast to the previously studied bS1 from T.

thermophilus, is less prone to aggregation and forms small and less dense aggregates of various sizes . The

images of amyloids/aggregates of peptide synthesized based on the predicted amyloidogenic regions in the bPaS1

amino acid sequence are shown in Figure 3.

Peptide Prediction of
Amyloidogenicity

Percentage of
Most Non-

Polar a.a. 
(V,I,F,C,L,A,M),

%

Observed
Mass, Da

Theoretical
Mass, Da

Measurement
Error, ppm *

Molecular
Ion, m/z

Charge
(z)

Value of
the

Function
T **

KQEVESA
(536–542 a.a.)

No 29 789.388 789.3868 1.1 395.7011 +2 41.89

[45] [46]
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Figure 2. Electron microscopic image of the bPaS1 protein under conditions of 50 mM TrisHCl, pH 8.0; 100 mM

NaCl; 10 mM MgCl ; 5 mM β-mercaptoethanol.

Figure 3. Electron microscopic images of aggregates formed from peptide preparations synthesized based on the

bPaS1 sequence: AIITGIVVDI (A), SWIVLEAAFA (B), ITDFGIFIGL (C), and disordered aggregates of the

LHITDMAWKR peptide (D).

According to EM data, it was shown that the AIITGIVVDI, SWIVLEAAFA, and ITDFGIFIGL peptides under

conditions of 50 mM TrisHCl, pH 7.5; 150 mM NaCl, incubation for 5 h at 37 °C are able to form amyloid-like fibrils

2
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of various morphologies. Under the same conditions, the LHITDMAWKR peptide did not form fibrils, but only

disordered aggregates.

5. Thioflavin T Fluorescence Assay for Aggregation of bPaS1
and Peptides

The property of thioflavin T to bind to amyloid fibrils with a simultaneous multiple increase in fluorescence at a

wavelength of ~485 nm  was used by us to analyze the tendency towards the formation of amyloids in bPaS1

preparations and AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL, LHITDMAWKR peptides (Figure 4). In Figure 4 (Part

1), the ThT fluorescence intensity at a wavelength of ~485 nm, exceeding the control values for free ThT by a

factor of ten or more, was obtained for preparations of the AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL peptides

(Figure 4C–E,K, Part 1), as well as in a mixture of these peptides with bPaS1 (Figure 4G–I,L, Part 1). At the same

time, for bPaS1 preparations and the LHITDMAWKR peptide (Figure 4B,F, Part 1), as well as for their mixture in

solution (Figure 4J, Part 1), a multiple increase in the ThT fluorescence intensity was not observed.

[48]



Amyloidogenic Regions in bPaS1 | Encyclopedia.pub

https://encyclopedia.pub/entry/12241 8/12

Figure 4. Histograms (1) and spectra (2) of fluorescence intensity of free thioflavin T (A,a) and in solution with

bPaS1 (B,b), individual peptides AIITGIVVDI (C,c), SWIVLEAAFA (D,d), ITDFGIFIGL (E,e), LHITDMAWKR (F,f), a

mixture of peptides (K,k), as well as in mixtures of bPaS1 with peptides (G,g), (H,h), (I,i), (J,j), (L,l). Error bars with

standard deviations for the mean values of the measured fluorescence intensity after 1, 3, 5, 8, and 24 h of

incubation are shown.

Thus, the presence of the effect of a multiple increase in the ThT fluorescence intensity upon incubation with

preparations of the AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL peptides and the absence of such an effect for

preparations with the LHITDMAWKR peptide is consistent with the data of electron microscopy that the

AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL peptides form amyloid fibrils, while only disordered aggregates of the

peptide are found in the LHITDMAWKR preparations.

It should be noted that when testing the propensity for coaggregation of individual peptides with bPaS1, the

greatest increase in the ThT fluorescence intensity was observed in a mixture of the ITDFGIFIGL peptide with

bPaS1 after 24 h of incubation (Figure 4i, Part 2).

Thus, although bPaS1 preparations do not form amyloid-like fibrils, they affect the change in the relative intensity

and wavelength of the maximum intensity of ThT fluorescence in mixtures with amyloidogenic peptides. No such

effects were observed in mixtures of bPaS1 with the non-amyloidogenic LHITDMAWKR peptide.
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