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Multiple myeloma (MM) is a mature B-cell neoplasm that is characterized by uncontrolled growth of plasma cells (PCs) in

bone marrow (BM) which leads to excessive secretion of antibodies. The progression of MM is a multistep process that

starts with an asymptomatic premalignant condition known as monoclonal gammopathy of undetermined significance

(MGUS), in which BM produces abnormal PCs and secretes M protein instead of normal antibodies.
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1. The Pathogenesis of Multiple Myeloma

Multiple myeloma (MM) is a mature B-cell neoplasm that is characterized by uncontrolled growth of plasma cells (PCs) in

bone marrow (BM) which leads to excessive secretion of antibodies. The progression of MM is a multistep process that

starts with an asymptomatic premalignant condition known as monoclonal gammopathy of undetermined significance

(MGUS), in which BM produces abnormal PCs and secretes M protein instead of normal antibodies . With the increase

in oncogenic mutations, MGUS evolves into smoldering MM (SMM), which is characterized by a higher serum level of M

protein and a higher percentage of clonal PCs. About 50% of patients with SMM show a constant increase of M protein

and develop MM . While both MGUS and SMM are asymptomatic, complications of accumulated proteins may start to

affect the kidneys . Almost 20–40% of MM patients have renal disease by the time of diagnosis .

The complexity of MM is attributed to the clinical and biological heterogeneity of the disease that further genetically

evolves during its progression . MM cells have a wide range of genetic changes including point mutations, insertions,

deletions, multiploidy, and chromosomal translocations . For example, trisomic MM and patients with t(11;14) are

considered standard-risk patients. On the other hand, MM patients with t(4;14), t(14;16), t(14;20), p53 mutation, gain 1q,

or del(17p) are considered to be high-risk . Moreover, the bone marrow microenvironment (BMM) plays an important

role in disease development, progression, and resistance . All these factors enhance different signaling pathways that

contribute to proliferation, survival, invasion, angiogenesis, and osteoclastogenesis . There are many signaling

pathways that protect against apoptosis and support MM growth which become activated through the adhesion of MM to

the BMM. These activated pathways include phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian

target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), janus kinase 2 (JAK2)/signal transducer and activator

of transcription 3 (STAT3), which support MM growth and protect against apoptosis (Figure 1). The activation of these

pathways leads to upregulation and secretion of several cytokines and factors from both MM and BMM cells such as

interleukin-6 (IL-6), insulin-like growth factor-1, VEGF, tumor necrosis factor alpha (TNF-α), and transforming growth

factor-β .
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Figure 1. Major signaling pathways in MM. MM receives several survival and proliferation signals: JAK2/STAT3

pathway activates antiapoptotic proteins and activates NF-κB, the PI3K/AKT/mTOR pathways become activated when

stromal-derived factor 1 α (SDF-1α) binds to CXCR4 and/or antigen binds to B-cell receptor (BCR). The RAS/MEK/ERK

pathway becomes activated by BCR and CD19. Wnt/β-catenin pathway activation enhances differentiation, survival,

migration, and antiapoptotic signals. Ras: rat sarcoma; Raf: rapidly accelerated fibrosarcoma; MEK: mitogen-activated

protein kinase kinase. Created by Biorender.com.

The BMM contains several specialized cells that are responsible for skeletal integrity, immunity, and blood formation 

 (Figure 2). Its compartments are classified into niches: the immune niche, the vascular niche and the endosteal niche

. Each niche contains various cell types such as B-cells, T-cells, myeloid-derived suppressor cells, osteoclasts, natural

killer (NK) cells, mesenchymal stem cells, BM stromal cells (BMSCs), osteoblasts, and endothelial progenitor cells .

[13]

[14]

[15]

[16]



Multiple Myeloma Pathogenesis and The Existing Therapies | Encyclopedia.pub

https://encyclopedia.pub/entry/42279 3/20

Figure 2. MM microenvironment. MM cells interact with several cells in the BMM such as BMSCs, osteoclasts,

osteoblasts, cytotoxic T-cell (CTLs), natural killer (NK) cells, adipocytes. This interaction enhances MM survival and

inhibits immune cells. VCAM: vascular cell adhesion protein; LFA-1: lymphocyte function-associated antigen-1; ICAM-1:

intercellular adhesion molecule 1; IGF-1: insulin-like growth factor-1. Created by Biorender.com.

BMSCs are a heterogeneous cell population that supports hematopoiesis in normal conditions. They play an important

role in supporting the survival, proliferation, and drug resistance of MM . They communicate with MM in several ways.

The direct cell adhesion contact through adhesion molecules such as very late antigen 4 (VLA-4), vascular cell adhesion

protein, lymphocyte function-associated antigen-1, and intercellular adhesion molecule 1 stimulates IL-6 secretion by

BMSCs  and mediates drug resistance through cellular-adhesion-mediated drug resistance (CAM-DR) . Stromal

cell-derived factor-1α (SDF-1α), a chemokine produced by BMSCs, plays an important role in embryogenesis,

angiogenesis, hematopoiesis, and inflammation . It stimulates homing and migration of cells through G protein-

coupled receptor C-X-C chemokine receptor type 4 (CXCR4) . The SDF-1α/CXCR4 axis plays an important role in

survival, angiogenesis, metastasis, invasion, and adhesion in MM (Figure 2) . It has been shown that the SDF-1α

level in MM is elevated and this elevation contributes to activating several signaling pathways and induces mitogen-

activated protein kinase kinase1/2, AKT phosphorylation, mitogen-activated protein kinase (MAPK), and NF-κB in MM

cell lines and patient samples . The SDF-1α/CXCR4 axis mediates drug resistance through different pathways that

are involved in CAM-DR, affecting adhesion molecules, enhancing IL-6 mediated drug resistance, and stimulating

pathways including MAP/extracellular signal-regulated kinase (ERK), wingless/integrated3 (Wnt3)/Ras homolog family

member A/Ras homologous -associated protein kinase, and Ras homologous/Ras homologous -kinase .

Other cytokines and growth factors secreted from BMSCs suppress the immune response and facilitate MM immune

evasion. One of the most important cytokines in MM is IL-6, which is secreted by different BM cells including BMSCs,
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osteoclasts, and macrophages . IL-6 secretion stimulates the JAK/STAT3 pathway, which leads to increased survival

and proliferation through the upregulation of Mcl-1, Bcl-xL, Bcl-2, c-Myc, and cyclin D1 . As MM progresses,

osteoclast activity increases, which in turn causes bone lesions. During disease progression, an imbalance occurs in

receptor activator of NF-κB ligand (RANKL), and osteoprotegerin .

In autologous hematopoietic progenitor cell (HPC) transplantation, plerixafor, a specific antagonist of SDF-1α binding to

CXCR4, was approved in 2008 to induce hematopoietic stem cells (HSCs) and progenitor cells (HPCs) trafficking. It has

been shown that it augments granulocyte colony-stimulating factor (G-CSF)-induced mobilization of HSCs and HPCs 

.

2. The Existing Therapies for MM

In the 1960s, oral melphalan, an alkylating agent, in combination with prednisone was considered the frontline treatment

for MM . Then, FDA-approved thalidomide, an immunomodulatory agent (IMiDs), was introduced in MM therapy.

Thalidomide enhanced the overall survival (OS) and showed longer progression-free survival (PFS) regardless of patient

age when used in combination with melphalan and prednisolone (clinical trial # NCT00232934, and ISRCTN90692740)

. Additionally in the 1980s, autologous stem cell transplantation (ASCT) followed by a high dose of therapy was

introduced and became the standard of care among younger patients with normal renal function .

The discovery and the introduction of proteasome inhibitors (PIs) in 2003 has tremendously improved PFS in patients

. Bortezomib became the first line of treatment for MM in newly diagnosed MM (NDMM) patients. For relapsed and

refractory MM (RRMM) patients, it was used in combination with melphalan and prednisone (Table 1) . After the

success of bortezomib, other PIs such as carfilzomib and ixazomib were approved for the MM treatment. In the

TOURMALINE-MM1 trial (NCT01564537), oral ixazomib was tested in combination with lenalidomide and

dexamethasone (IRd) on RRMM patients and it has significantly improved the PFS (20.6 months in the IRd group vs.

14.7 months in the Rd group (lenalidomide and dexamethasone) at a median follow-up of 14.7 months). The overall

response rate (ORR) was 78% in the IRd group and 72% in the Rd group. The median OS was not reached at a median

follow-up of approximately 23 months. The additional adverse effects between the two groups were limited and there was

a similar quality of life between the IRd and the Rd groups .

Table 1. FDA-approved medications for MM from 2006 to 2013.
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Drug Year Treatment Adverse Effects Refs.

Thalidomide 2006 NDMM somnolence, constipation, neuropathy, VTE, and rash

Lenalidomide 2006
Received
one prior
therapy

neutropenia, thrombocytopenia, leukopenia, lymphopenia, febrile
neutropenia, deep vein thrombosis, pulmonary embolism, atrial

fibrillation, constipation, diarrhea, fatigue, pneumonia, hypokalemia,
hypocalcemia, muscle weakness, neuropathy, and depression

Doxorubicin 2007 RRMM
thrombocytopenia, neutropenia, anemia, fatigue, pyrexia, nausea,
vomiting, mucositis/stomatitis diarrhea, and hand foot syndrome
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NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma; NTE: non-transplant-eligible;

TE: transplant eligible; Td: thalidomide, dexamethasone; Rd: lenalidomide, dexamethasone; V: bortezomib; PLD-V:

pegylated liposomal doxorubicin, bortezomib; MP: melphalan, prednisone; VMP: bortezomib, melphalan, prednisone; G-

CSF: granulocyte-colony-stimulating factor; Plerix-G-CSF: plerixafor, granulocyte-colony-stimulating factor; Pd:

pomalidomide, dexamethasone; VTE: venous thromboembolism; PSN: Peripheral sensory neuropathy; ARF: acute renal

failure; CHF: congestive heart failure; URTI: Upper respiratory tract infection.

The introduction of a new generation of IMiDs such as lenalidomide in 2005, in combination with PIs, increased survival

from 14.8 to 30.9 months . Currently, a triple therapy (PI, IMiD, and corticosteroids) is the first line of treatment for MM

followed by autologous stem cell transplant (ASCT). Lenalidomide is usually recommended as a maintenance therapy for

MM patients . A combination of bortezomib, lenalidomide, and dexamethasone (VRd) was tested on NDMM in the

SWOG-S077 phase III clinical trial (NCT00644228) versus Rd. There was a significant improvement in median PFS (43

months in VRd group vs. 30 months in Rd group) and in median OS (75 months in VRd vs. 64 months in the control

group). The ORR was 82% in the VRd group vs. 72% in the Rd group . The next generation IMiD, pomalidomide is

shown to be effective and is one of the treatment options that is usually considered in combination after the first relapse

for patients who are refractory to lenalidomide . It was first approved in 2013 in combination with dexamethasone for

RRMM patients . Then, it was approved in combination with anti-CD38 monoclonal antibody and a steroid for RRMM

patients who have previously received two therapies including lenalidomide and bortezomib .

Introducing daratumumab, an anti-CD38, in clinical trials (MAIA, ALCYONE, CASTOR, and POLLUX) with different

combinations improved minimal residual disease negativity (MRD), and PFS  (Table 2). In 2019, daratumumab,

lenalidomide, and dexamethasone (DRd) treatment was approved in NDMM patients who are ineligible for transplant

after phase III MAIA trial (NCT02252172). In this study, DRd showed significant improvement in PFS (not reached)

compared with lenalidomide and dexamethasone (Rd) (31.9 months). The median OS was not reached at a median

follow-up of 56.2 months. The common adverse effects of this treatment are neutropenia, pneumonia, anemia, and

lymphopenia. Treatment-related-death was 4% in the DRd group compared to 3% in the Rd control group . In

addition, daratumumab was tested in combination with bortezomib and melphalan-prednisone (D-VMP) in a phase III

ALCYONE trial (NCT02195479) in NDMM patients. The 18-month PFS was 71.6%. At a median follow-up of 16.5

months, 22.3% of the patients were negative for MRD. The common adverse effects were neutropenia,

thrombocytopenia, and anemia . After the CASSIOPEIA phase III trial (NCT02541383) on ND transplant-eligible MM

patients, daratumumab was approved to be used in combination with bortezomib, thalidomide, and dexamethasone (D-

VTd) in 2019. At a median follow-up of 35.4 months, PFS was not reached versus 46.7 months with the control group.

The most common adverse effects were lymphopenia, hypertension, and neutropenia .

Table 2. FDA-approved medications for MM from 2014 to 2019.

Drug Year Treatment Adverse Effects Refs.

Bortezomib 2008 NDMM
asthenic conditions, diarrhea, constipation, PSN, vomiting, nausea

psychiatric disorders, pyrexia, anorexia, thrombocytopenia,
leukopenia, neuralgia, neutropenia, and anemia

Plerixafor 2008 MM
diarrhea, vomiting, nausea, fatigue, headache, injection site

reactions, dizziness, and arthralgia

Carfilzomib 2012 RRMM
fatigue, anemia, nausea, thrombocytopenia, dyspnea, diarrhea,

pyrexia, pneumonia, ARF, pyrexia, and CHF

Pomalidomide 2013 RRMM
asthenia, fatigue, neutropenia, anemia, constipation, diarrhea,

nausea, URTI, dyspnea, back pain, and pyrexia
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NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma; NTE: non-transplant-eligible;

TE: transplant eligible; ORR: overall response rate; Vd: bortezomib, dexamethasone; PAN-Vd: panobinostat,

bortezomib, dexamethasone; Rd: lenalidomide, dexamethasone; KRd: carfilzomib, lenalidomide, dexamethasone; DVd:

daratumumab, bortezomib, dexamethasone; DRd: daratumumab, lenalidomide, dexamethasone; IRd: ixazomib,

lenalidomide + dexamethasone; VTd: bortezomib, thalidomide, and dexamethasone; DVTd: daratumumab, bortezomib,

thalidomide, dexamethasone; ERd: elotuzumab, lenalidomide, dexamethasone; Sd: selinexor, dexamethasone; m:

Treatment choices differ according to age, cytogenic abnormalities, and eligibility for transplantation. Maintenance

therapy for standard-risk MM patients is lenalidomide. However, bortezomib is used as a maintenance therapy for high-

risk ND patients who are determined to be eligible for ASCT. ND high-risk patients who are eligible for ASCT start with

three to four cycles of VRd or three to four cycles of quadruplet regimen of daratumumab, bortezomib, lenalidomide, and

dexamethasone (DVRd) .

Drug Year Treatment Adverse Effects Name and NCT
Number Refs.

Panobinostat 2015 RRMM

pneumonia, diarrhea, arrhythmias,
hypophosphatemia and hypokalemia,

ECG change, thrombocytopenia,
neutropenia fatigue, and sepsis

PANORAMA1
NCT01023308

Carfilzomib 2015 RRMM
CVE, VTE, ARF, pulmonary toxicities,
hypertension, and thrombocytopenia

ASPIRE
NCT01080391

Daratumumab 2015 RRMM

fatigue, nausea, back pain, pyrexia,
URTI, cough, IRs, lymphopenia,

neutropenia, anemia, and
thrombocytopenia

SIRIUS
NCT01985126

Ixazomib 2015 RRMM
diarrhea, constipation, thrombocytopenia,

PSN, nausea, peripheral edema,
vomiting, and back pain

TOURMALITOURMALINE
NCT01564537

Elotuzumab 2015 RRMM
ARF, pneumonia, nasopharyngitis

pyrexia, anemia, pulmonary embolism,
and PSN

ELOQUENT-2
NCT01239797

Daratumumab 2016 RRMM
URTI, cough, diarrhea, fatigue, nausea,
pyrexia, muscle spasm, and dyspnea,

neutropenia, anemia

POLLUX
NCT02076009

Daratumumab 2016 RRMM
URTI, IRs, diarrhea, peripheral edema,
Neutropenia, and thrombocytopenia,

anemia

CASTOR
NCT02136134

Daratumumab 2019
NTE

NDMM

IRs, URTI, diarrhea, constipation,
peripheral edema, nausea, fatigue,
asthenia, dyspnea, pyrexia, muscle

spasms, and PSN

MAIA
NTC02252172

Selinexor 2019 RRMM

Thrombocytopenia, fatigue, nausea,
anemia, diarrhea, vomiting,

hyponatremia, neutropenia, leukopenia,
constipation, dyspnea, and URTI

STORM
KCP-330-012
NCT02336815

Daratumumab 2019
TE

NDMM

IRs, PSN, constipation, asthenia,
nausea, neutropenia, thrombocytopenia,

peripheral edema, pyrexia and
paresthesia

CASSIOPEIA
NCT02541383
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months; PFS: progression-free survival; NR: Not Reached; URTI: Upper respiratory tract infection; PSN: Peripheral

sensory neuropathy; IRs: Infusion reactions; VTE: venous thromboembolic events; CVE: Cardiovascular events, ARF:

acute renal failure.

2.1. Mechanism of Action of Proteasome Inhibitors

PIs kill myeloma cells through different pathways (Figure 3). Inhibition of proteosomes leads to the accumulation of

ubiquitinated proteins that would otherwise be degraded in the proteosome. This leads to the accumulation of these

proteins in the endoplasmic reticulum (ER), which in turn causes ER stress, which leads to ER stress-dependent

apoptosis and activation of the Jun amino-terminal kinases (JNKs) pathway, increasing the Fas ligand, caspase 8, and

caspase 3 . Furthermore, mitochondrial injury occurs due to the direct effect of ubiquitinated proteins and the

indirect effect of the ER stress that releases reactive oxygen species (ROS) . The direct apoptosis effect of PIs can

also occur through accumulation and phosphorylation of P53, which stimulates pro-apoptotic proteins such as Bcl-2-

associated X protein (Bax), NADPH oxidase activator (NOXA), cytochrome-c release, and inhibition of the antiapoptotic

protein Mcl-1 .

Figure 3. Proteasome inhibitors (PIs) induce apoptosis and inhibit CAM-DR. PIs induce protein accumulation, which

leads to ER stress and activates JNK, which in turn activates caspase-8 and caspase-3, increases Fas, and generates

ROS. In addition, PI enhances pro-apoptotic proteins, NOXA and BAX, and inhibits Mcl-1, which leads to apoptosis.

Moreover, PI inhibits CAM-DR through inhibition of adhesion molecules (adapted from ). Created by Biorender.com.

Bortezomib is the first-generation FDA-approved PI that reversibly inhibits the chymotrypsin-like activity of the

proteasomes . Bortezomib has been shown to inhibit NF-κB, which in turn inhibits its downstream pathways and their

products, including IL-6, vascular endothelial growth factor (VEGF), c-Myc, and cyclin D1 . On the other hand,

bortezomib has been shown to induce constitutive NF-κB activity which could be due to the difference in response

among different cell clones  (reviewed in ). In addition, bortezomib ameliorates CAM-DR by inhibiting the

expression of adhesion molecules such as VLA-4. Therefore, it resensitizes MM cells to treatment . Even though

introducing bortezomib has numerous benefits for patients, several side effects such as peripheral neuropathy may

occur. The second-generation PI, carfilzomib, which does not cross the blood–brain barrier may have lower incidence of

neuropathy. However, caution should be taken in using carfilzomib in elderly patients as it has shown cardiovascular side
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effects (reviewed at ). Similarly, ixazomib showed lower neurotoxicity than bortezomib as well as more efficacy in

clinical trials .

2.2. Mechanism of Action of Immunomodulatory Drugs

IMiDs target some proteins for ubiquitination and proteasomal degradation through binding with cereblon ubiquitin ligase,

forming an E3 ubiquitin ligase complex with DNA damage-binding protein 1, Cullin-4A, and RING box protein-1 (Figure

4). They target IKAROS family zinc finger 1 and 3 (IKZF1 and IKZF3), which are transcription factors that play an

important role in lymphocyte biology. IKZF3 is an essential transcription factor in plasma cell development and therefore

its degradation affects MM progression .

Figure 4. The direct and indirect effect of IMiDs on MM. IMiDs enhances apoptosis and inhibits MM proliferation

through the cyclin-dependent pathway. IMiDs works indirectly through activating the immune cells. CRBN: Cereblon,

DDB1: DNA damage-binding protein 1, CUL4: Cullin-4A, and ROC1: RING box protein-1. Created by Biorender.com.

Another protein that has been shown to be degraded by IMiDs is casein kinase 1 alpha (CK1α), which plays an important

role in the pathogenesis of MM. CK is one of the serine/threonine kinases that is important in cell survival and has been

shown to be important in different types of cancer including MM . Manni et al. have shown that CK1α is overexpressed

in most patients’ samples and its inhibition leads to apoptosis, a decrease in β-catenin and AKT expression, and an

increase in p53 and p21 expression. In addition, the same group showed that CK1α inhibition enhances the cytotoxicity

of bortezomib and lenalidomide on MM . Interestingly, both CK1α and CK2 have been shown to sustain activation of

important signaling pathways such as JAK/STAT, NF-κB, and PI3K/AKT . IMiDs also inhibit the proliferation of

PCs by inhibiting the cyclin-dependent kinase pathway through inducing P21 . Moreover, IMiDs induce direct

apoptosis in PCs by activation of Fas-mediated cell death . Moreover, Hideshima et al. showed that IMiDs inhibit

the kinase activity of p53-related protein kinase (TP53RK), which correlate negatively with MM patients’ survival.

TP53RK phosphorylate serine 15 of p53, which in turn affects MM growth. The binding of IMiDs to TP53RK triggers
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apoptosis by inducing pro-apoptotic protein Bim. It also affects the metastasis of MM cells by inhibiting c-Myc protein

.

The treatment of IMiDs helps in restoring the immune homeostasis. Several mechanisms have been proposed for IMiDs-

mediated immune restoration, for example thalidomide stimulates the proliferation of T-cells and increases the secretion

of interferon-gamma (IFN-γ) and interleukin-2 (IL-2) . Along these lines, lenalidomide has been shown to

stimulate T-cell-mediated cytotoxicity, induction of T-cell proliferative responses to allogeneic dendritic cells, and

suppresses expression of programmed cell death protein-1 (PD-1) . In addition, lenalidomide and pomalidomide

suppress forkhead box P3 transcription factor and T regulatory cell expansion . Moreover, lenalidomide enhances the

expression of Fas ligand on NK cells and increases granzyme secretion which correlates to an increase in Ab-dependent

cellular cytotoxicity (ADCC) . Lenalidomide and pomalidomide inhibit the expression of adhesion molecules and

inhibit the RANKL/osteoprotegerin ratio, which leads to inhibition of osteoclast formation .

2.3. Mechanism of Action of Histone Deacetylase Inhibitors

Dysregulation in epigenetics including histone acetylation has been shown in different types of cancer including MM 

. Mithraprabhu et al. have shown that class I histone deacetylase (HDAC) is significantly upregulated in MM patients’

samples compared with normal PCs . Moreover, upregulation of HDAC1 was correlated with poor prognosis and

shorter OS .

Removal of the acetyl group from the lysine residue on histone by HDACs causes transcription repression (Figure 5).

HDACs affect different proteins via deacetylation either directly or indirectly by affecting the function of the chaperone

protein that is needed for their stabilization. HDACs cause hyperacetylation and therefore destabilization for the

chaperone protein heat shock protein 90 (HSP90), which inhibits its association with CXCR4 leading to proteasomal

degradation of CXCR4 in acute myeloid leukemia (AML) cells . HDACs also cause degradation of protein

phosphatase 3 catalytic subunit alpha (PPP3CA), which is overexpressed in MM, and patients show poor prognosis

when it is overexpressed. As HDAC6 plays an important role in the aggresomal protein degradation, its inhibition

significantly synergizes with proteasomal inhibition in MM . Hideshima et al. have shown that a selective HDAC6

inhibitor increased the cytotoxicity of bortezomib in vitro and overcame its resistance through JNK activation and ER

stress . In 2015, panobinostat was approved for treatment of RRMM patients in combination with dexamethasone.

HDAC inhibitors (HDACis) have been shown to affect the acetylation of histone and non-histone proteins; they therefore

affect different cell processes including apoptosis, survival, angiogenesis, and the cell cycle .
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Figure 5. The effect of HDACis on MM. HDACis cause proteasomal degradation of CXCR4 and PPP3CA and enhance

the expression of tumor suppressors. Created by Biorender.com.
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