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CONSTANS (CO) is an important regulator of photoperiodic flowering and functions at a key position in the
flowering regulatory network. Here, two CO homologs, MiCOL16A and MiCOL16B, were isolated from “SiJiMi”
mango to elucidate the mechanisms controlling mango flowering. The MICOL16A and MICOL16B genes were
highly expressed in the leaves and expressed at low levels in the buds and flowers. The expression levels of
MICOL16A and MiCOL16B increased during the flowering induction period but decreased during the flower organ

development and flowering periods.

mango CONSTANS flowering functional analysis

| 1. Introduction

In higher plants, floral transition is the process that describes the switch from the vegetative stage to the
reproductive stage. The time for this process is referred to as flowering time. The flowering mechanism of the
annual plant species Arabidopsis is thoroughly understood. According to recent research, the onset of flowering is
regulated in a timely manner by an intricate network involving a series of regulatory pathways, such as gibberellin,
photoperiod, autonomous, aging and vernalization pathways 2B Of the many regulatory pathways, the
photoperiod pathway is especially important; it is involved in plant responses to photoperiod sensing and

subsequent molecular events 4,

Many photoperiod pathway-related genes have been discovered, such as TIME OF CAB EXPRESSION 1 (TOC1),
LATE ELONGATED HYPOCOTYL (LHY), EARLY FLOWERING 4 (ELF4), GIGANTEA (Gl), CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1), FLOWERING LOCUS T (FT) and CONSTANS (CO) B. Among them, CO is a key
component of which there are orthologs in various plant species BB, Currently, CYCLING DOF FACTOR
(CDF) is known as the only transcription factor that directly binds to the CO promoter and suppresses the
expression of CO QU2 The G| gene plays a key role in the photoperiod induction pathway and positively
regulates the expression of the CO gene under long-day conditions 131, Overexpression of the FLOWERING BHLH
(FBH) gene elevates CO levels without being affected by photoperiod 24l In addition, phytochrome-interacting
factors (PIFs) interact with CO to suppress flowering 2. The E3 ubiquitin ligase-encoding gene HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOSL1) is involved in controlling the abundance of
CO, and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), as a flowering repressor, is regulated by
cryptochromes (CRY) and promotes the proteolysis of CO in the dark 18271 CO genes belong to the BBX family

and can be divided into three categories according to their domains in Arabidopsis [J[28. Group | genes have one
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CO, CO-like, and TOC1 (CCT) domain and two B-box domains; group Il genes have one B-box and one CCT

domain; and group Il genes have one B-box, one variant B-box and one CCT domain.

However, the functions of CO orthologs vary across different species. In Arabidopsis, overexpression of the AtCO,
AtCOL5 and AtCOL16 genes promotes flowering under long-day (LD) or short-day (SD) conditions 19201 pyt
AtCOL7, AtCOL8 and AtCOL9 inhibit flowering under LD conditions 2122l |n rice, the OsHd1 gene delays
flowering under LD conditions and promotes flowering under SD conditions 23], and OsCOL16 inhibits flowering
under both SD and LD conditions 24, StCO, a CO homolog in potato, regulates flowering 22, Moreover, the CO
orthologs in Fuji apple, MdCOL1 and MdCOL2, play a significant role in the growth and development of
reproductive organs 28, Thus, homologous CO genes have a wide range of effects on plant flowering and

development.

Mango (Mangifera indica L.) is a member of the Anacardiaceae family and is an economically important fruit tree
species. Flowering time has a considerable influence on the yield and quality of mango. Therefore, the discovery
and identification of flowering-related genes are necessary for mango production. Mango flowering is the result of a
complex process influenced by many factors, but it is not affected by daylength 2. Several flowering-related
regulatory genes have recently been identified in mango. For example, the MIiFT, MiSOC1 and MIAP1 genes
promote flowering, but the MiCO gene inhibits flowering in Arabidopsis [28228B1] However, the COL16 gene has

not been studied in mango.

| 2. Isolation and Analysis of MiCOL16A and MiCOL16B

Two CO homologs, MiCOL16A (GenBank No: MW326761) and MICOL16B (GenBank No: MW326762), were
identified from M. indica. L. cv. SiJiMi. The full cDNA sequences of MIiCOL16A and MiCOL16B were 1269 bp and
1251 bp, encoding 423 and 417 amino acids, respectively; the two genes were 73.06% identical. The DNA
sequences of MICOL16A and MiCOL16B were 2030 bp and 1751 bp, respectively, and each contained one intron
(Figure 1A). The alignment of MICOL16A and MiICOL16B indicated that both have one CCT and one B-box
domain and are highly conserved with other genes (Figure 1B). Phylogenetic analysis showed that these two
genes were highly identical to Arabidopsis AtCOL6 and AtCOL16 in group Il (Figure 1C). Therefore, these results
indicated that MiCOL16A and MiCOL16B belong to group Il genes of the CO gene family.
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Figure 1. Sequence analysis of MICOL16A and MICOL16B. (A) Genomic structures of MICOL16A and MIiCOL16B.
Exons are represented by black squares, and introns are represented by black lines. The numbers indicate the
lengths of the corresponding regions. (B) Alignment of the predicted amino acid sequences of AtCOL6-8 and
AtCOL16 in Arabidopsis and of MICOL16A and MiCOL16B in mango. The conserved CCT and B-box domain
regions are indicated with red boxes. The dark color indicates that the amino acids are 100% conserved. (C)
Phylogenetic relationship of CO/COL proteins in Arabidopsis and mango. MICOL16A and MICOL16B are

represented by black solid circles.

| 3. Expression of MiCOL16A and MiCOL16B in Mango

For the tissue-specific expression tests, gRT-PCR was performed. The results showed that MIiCOL16A and
MICOL16B were expressed in all the tested tissues. On different branches, the expression levels of MiCOL16A and
MICOL16B in the leaves were always higher than those in the stems, buds or flowers, and the lowest expression
levels of MICOL16A and MiCOL16B were detected in the buds and flowers. In contrast, the expression level of
MICOL16A in the leaves of nonflowering branches was higher than that in the leaves of flowering branches (Figure
2A), but MICOL16B expression was lower in the leaves of nonflowering branches than in those of flowering

branches (Figure 2B).
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Figure 2. Tissue-specific and temporal expression analysis of the MICOL16A and MICOL16B genes. (A,B)
Expression patterns of the MICOL16A and MICOL16B genes in different tissues of SiJiMi mango. (C,D) Expression
patterns of the MICOL16A and MiCOL16B genes at different time points.

To analyze the temporal expression patterns of MiCOL16A and MiCOL16B, qRT-PCR was performed. The results
suggested that the two target genes were expressed in the leaves of mango at all tested periods. The expression
pattern of MICOL16A gradually increased from vegetative growth to the late floral induction period and then

decreased (Figure 2C). However, MiCOL16B gene expression increased from the vegetative growth period to the
early floral induction period and then decreased (Figure 2D).

The circadian-driven expression of MiCOL16A and MICOL16B was determined using total RNA isolated from
‘SiJiMi"” mango leaves, which were collected every 3 h for three days. The results suggested that under LD
conditions, the expression level of MICOL16A started to increase after dusk, peaked 6 h after dusk and decreased
rapidly thereafter before beginning to increase again after dusk (Figure 3A). Interestingly, this pattern also
appeared under MD and SD conditions, and this result proved that MICOL16A expression may be induced by night
treatment and is not affected by the length of light (Figure 3C,E). The expression level of MIiCOL16B fluctuated
with time under different conditions, but there was no regularity. These results suggest that MICOL16A expression
exhibits a diurnal oscillation rhythm, but MiCOL16B expression is not affected by a diurnal rhythm (Figure 3B,D,F).
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Figure 3. Expression analysis of the MICOL16A and MICOL16B genes in terms of circadian rhythm. (A,C,E)

Expression patterns of MiCOL16A under LD (A), normal (C) and SD (E) conditions. (B,D,F) Expression patterns of
MiCOL16B under LD (B), normal (D) and SD (F) conditions.

4. Both MiCOL16A and MiCOL16B Are Nuclear Proteins with
Transcriptional Activation Activity

MICOL16A and MICOL16B protein-linked GFP fusion constructs driven by the CaMV 35S promoter were
developed for molecular function assays. The GFP fusion constructs were inserted into vectors, which were
transferred into onion inner epidermal cells. Single-strand analysis indicated that free GFP localized to the nucleus
and cytomembrane, and both the MiCOL16A and MiCOL16B proteins localized to the nucleus (Figure 4A).
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Figure 4. (A) Subcellular localization. Scale bars = 100 um. (B) Transcriptional activation activity. The left diagram
shows various constructs. MCS, multiple cloning sites; BD, GAL4-DNA binding domain; BBX, B-box; CCT, CO, CO-
like, TOC1; MR, middle region.

A transcriptional activity assay was performed in yeast cells to demonstrate whether MiCOL16A or MiCOL16B had
transcriptional activation activity. According to a previous study, the MR between the B-BOX and CCT domains is
required for CO transcriptional activity (24321331 Thus, MiCOL16A, MiCOL16B, MiCOL16A-AMR and MiCOL16B-
AMR were fused into a pGBKT7 vector, and an empty pGBKT7 vector was used as a control. The five different
plasmids were transferred into yeast cells, which were then transferred onto different plates. Three days later, all
the transformants grew equally well on selective SD/-Trp media. On these three selective media, the BD-
MiCOL16A and BD-MiCOL16B transformants grew well and turned blue, but the yeast transformed with the BD-
vector, BD-MiCOL16A-AMR and BD-MiCOL16B-AMR grew only on SD/-Trp/X-a-gal plates and did not turn blue
(Figure 4B). Together, a-gal activity could not be detected when the MR region was deleted. These results showed
that through their MR domains, MiCOL16A and MiCOL16B have transcriptional activation activity in yeast.
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5. Overexpression of MiCOL16A and MiCOL16B Delayed
Flowering in Arabidopsis

To determine whether MICOL16A and MICOL16B are involved in the regulation of flowering time, they were
overexpressed in Arabidopsis (under the control of the CaMV 35S promoter). Researchers obtained 15 and 10
independent transgenic lines of MICOL16A and MICOL16B, respectively, and researchers selected three
homozygous lines for each construct from within the T3 generation and planted them under LD or SD conditions.
The PCR analysis results showed that MiCOL16A and MIiCOL16B were expressed in the transgenic plants but not
in the WT or empty vector-transformed Arabidopsis plants under LD (Figure 5(A1,B1)) or SD conditions (Figure
6(A1,B1)). Under LD and SD conditions, both the MiIiCOL16A and MiCOL16B transgenic lines flowered later than
the WT and empty vector-transformed plants. At flowering, compared with the WT and empty vector-transformed
plants, the MiCOL16A and MICOL16B transgenic plants had more rosette leaves (Figure 5 and Figure 6) (Table
1)
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Figure 5. Ectopic expression of MICOL16A and MICOL16B delayed flowering under LD conditions. (Al1,B1)
Expression of MiCOL16A (Al) and MICOL16B (B1) in the WT, empty vector-transformed and overexpression
plants. (A) MiCOL16A transgenic Arabidopsis plants under LD conditions. (B) MiCOL16B transgenic Arabidopsis

plants under LD conditions.
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Figure 6. Ectopic expression of MICOL16A and MIiCOL16B delayed flowering under SD conditions. (A1,B1)
Expression of MICOL16A (A1) and MiCOL16B (B1) in the WT, empty vector-transformed and overexpression
plants. (A) MICOL16A transgenic Arabidopsis plants under SD conditions. (B) MIiCOL16B transgenic Arabidopsis

plants under SD conditions.

Table 1. Overexpression of MICOL16A and MICOL16B repressed flowering in Arabidopsis.

Days to Flowering No. Rosette Leaves Plant Height 2 (cm)

D LD SD LD SD LD SD
WT 24.8+0.6 50.1+0.8 55+£05 7.2+0.3 6.4+0.8 11.4+0.6
pBl1121 256+04 49.6 £ 0.7 7.6 £0.6 7.0+0.5 6.7+0.4 11.7+0.4
MiCOL16A
OE2 28.0+0.3* 51.3+0.8 6.3+0.4 7.6+0.3 46+1.1* 142+09*
OES8 28.0+£05* 528+ 0.2* 6.8+0.6* 7.3+0.7 45+06* 142+0.8*
OE10 28.1+0.8* 52.8+0.3* 75+10* 7.3+0.5 6.2+1.1 13.0+0.3*
MiCOL16B
OE3 276 +£05* 53.0+£04* 6.6+0.7* 7.4+0.6 47+1.0* 17711 %
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ID Days to Flowering No. Rosette Leaves Plant Height 2 (cm)
LD SD LD SD LD SD
OE12 26.9+0.8* 51.2+0.9 7.1+05* 7.3+0.4 52+1.1* 17.1+1.0*
OE13 28.4+0.5* 51.5+0.4* 6.7+0.7* 6.6+0.6 43+0.8* 13.4+0.2*

2 Plant height was measured at the time of flowering. Significant differences among the samples were assessed at
the p < 0.05 (*) level by Student’s t tests.

To further dissect the expression patterns of the floral integrator genes in the MICOL16A and MICOL16B
overexpression lines, the transcript levels of AtFT and AtSOC1 were measured in the WT and overexpression
plants under LD or SD conditions (Figure 7). The results showed that both MIiCOL16A and MiCOL16B significantly
repressed the expression of AtSOC1 and AtFT in Arabidopsis under LD and SD conditions.
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Figure 7. Expression patterns of flowering-related genes. (A—D) Expression patterns of AtFT and AtSOCI in the
WT and the MICOL16A (A,B) or MiCOL16B (C,D) overexpression plants under LD conditions. (E—H) Expression
levels of AtFT and AtSOCI in the WT and the MICOL16A (E,F) or MIiCOL16B (G,H) overexpression plants under
SD conditions. Significant differences among the samples were assessed at the p < 0.05 (*) and p < 0.01 (**) levels

by Student’s t tests.

6. MiCOL16A and MiCOL16B Enhance Tolerance to Abiotic
Stress

To assess the effect of ectopic MICOL16A and MICOL16B expression in response to abiotic stress, three
homozygous lines (T3 generation) were selected. Three-day-old seedlings of the overexpression and WT plants
were transplanted onto half-strength MS media supplemented with mannitol and NaCl. The length of their roots
was measured after 7 days of stress treatment. The untreated WT and overexpression plants did not significantly
differ, but compared with the WT plants, both MiCOL16A and MiICOL16B overexpression plants grew better and

had longer roots under all stress conditions (Figure 8 and Figure 9). Together, these results showed that,
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compared with WT plants, MiCOL16A and MICOL16B transgenic plants had improved tolerance to drought and

salt stress.
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Figure 8. Assays of the length of the primary roots of WT and MICOL16A transgenic lines under abiotic stress. (A)

Seeds of the WT and three transgenic lines grown on half-strength MS media and subjected to various stresses.

The bars represent 1.0 cm. (B) Lengths of the roots of all the lines under salt and drought treatment. Significant

differences among the samples were assessed at the p < 0.05 (*) and p < 0.01 (**) levels by Student’s t tests.
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Figure 9. Assays of the length of the primary roots of the WT and MiCOL16B transgenic lines under abiotic stress.
(A) Seeds of the WT and three transgenic lines grown on half-strength MS media and subjected to various
stresses. The bars represent 1.0 cm. (B) Lengths of the roots of all the lines under salt and drought treatment.

Significant differences among the samples were assessed at the p < 0.01 (**) levels by Student’s t tests.

To further determine the response of MICOL16A and MiICOL16B transgenic plants to abiotic stress, 7-day-old
seedlings were transplanted into square pots. After the seedlings were allowed to recover, they were watered with
300 mM NaCl every 2 days, and regular water was withheld (Figure 10A,B). For salt treatment, the survival rate
was measured when obvious phenotypic differences occurred. Approximately 20.0% of WT plants, 80.0% of
OEMICOL16A#3 plants, 93.3% of OEMICOL16A#6 plants and 86.7% of OEMICOL16A#10 plants survived (Figure
10C). Similarly, approximately 26.7% of WT plants survived, but 73.3% of OEMICOL16B#3, 93.3% of
OEMICOL16B#12 and 86.7% of OEMICOL16B#13 plants survived (Figure 10D). With respect to the drought
treatment, the survival rate was measured after the plants had been rewatered for 3 days: a total of 6.7% of WT
plants survived, but 93.3% of OEMICOL16A#3, 80.0% of OEMICOL16A#6 and 73.3% of OEMICOL16A#10 plants
survived (Figure 10C). Similarly, no WT survived, but 40.0% of OEMICOL16B#3, 93.3% of OEMICOL16B#12 and
80.0% of OEMICOL16B#13 lines survived (Figure 10D). Together, these results showed that overexpression of
MICOL16A and MICOL16B in Arabidopsis improved salt and drought tolerance.
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Figure 10. Phenotypes of WT and MiCOL16A and MICOL16B transgenic plants under abiotic stresses. Normal,
control; salt, 300 mM NacCl solution applied every 2 days; drought, withholding of water. (A) WT and MiCOL16A
transgenic plants under different stresses. (B) WT and MiCOL16B transgenic lines under different stresses. (C-D)
Survival rates of the WT and the MICOL16A (C) and MICOL16B (D) transgenic lines under different stresses.

Significant differences among the samples were assessed at the p < 0.01 (**) levels by Student’s ¢ tests.

To explore the molecular mechanism underlying these phenomena in the transgenic lines in response to salt or
drought, four stress-related genes were selected: AtNHX1, AtRD20, AtSOS1 and AtCOR15A (Figure 11). Under
salt stress, the expression levels of AtNHX1, AtRD20 and AtSOS1 were significantly higher in the three transgenic
lines of MICOL16A than in the WT, but in the MiCOL16B transgenic lines, the expression level of AtRD20 was not
significantly higher (Figure 11A,B). Under drought conditions, the expression levels of AtCOR15A, AtRD20 and
AtNHX1 in the MICOL16A and MICOL16B transgenic lines were significantly higher than those in the WT (Figure
11C,D). These findings showed that by regulating the expression of stress-responsive genes, the MiCOL16A and
MiCOL16B genes might increase the stress tolerance of transgenic plants under drought or salt stress.
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Figure 11. Expression patterns of stress-responsive genes in WT and MiCOL16A and MiCOL16B transgenic lines.
(A,B) Salt stress conditions. Expression levels of the AtNHX1, AtRD20 and AtSOS1 genes in MiCOL16A (A) and
MiCOL16B (B) transgenic lines. (C,D) Drought stress conditions. Expression levels of the AiINHX1, AtRD20 and
AtCOR15A genes in the MIiCOL16A (C) and MiCOL16B (D) transgenic lines. Significant differences among the

samples were assessed at the p < 0.05 (*) and p < 0.01 (**) levels by Student’s t tests.
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