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Malignant melanoma (mM) is the leading cause of death among cutaneous malignancies. While its incidence is
increasing, the most recent cancer statistics show a small but clear decrease in mortality rate. This trend reflects
the introduction of novel and more effective therapeutic regimens, including the two cornerstones of melanoma
therapy: immunotherapies and targeted therapies. Unlike chemotherapies or radiation, in which the therapy directly
induces cancer cell death, immunotherapies stimulate the patient's immune system to control and eliminate the
tumor. Advantages of immunotherapies over traditional cancer treatments include increased durability for long-term
control or even cure and more precisely targeted anti-tumor activity that spares healthy tissues, many times with
comparable or even reduced overall toxicity. The high immunogenicity and somatic mutation burden of melanoma
likely contribute to the success of immunotherapy. Treatments combining immunotherapies with targeted therapies,
which disable the carcinogenic products of mutated cancer cells, have further increased treatment efficacy and
durability. Toxicity and resistance, however, remain critical challenges to the field. There are three types of
immunotherapies currently approved by the US Food and Drug Administration (FDA) for the treatment of advanced
melanoma: (1) T-cell stimulating cytokines (i.e. interferon (IFN)-a2b and interleukin-2 (IL-2)); (2) T-cell exhaustion-
mitigating immune checkpoint inhibitors (ICl); and (3) a dendritic cell (DC)-activating oncolytic virus (T-VEC). Still

others, such as adoptive cell transfer (ACT), hold strong promise for the future.

metastatic melanoma targeted therapy immunotherapy combined therapies

tumor relapse tumor resistance

| 1. Early Inmunotherapies

1.1. Interferon-a2b

Interferon (IFN)-a2b is a recombinant form of human IFN-a with antiviral and antitumor properties. It was the first
immunotherapy approved for melanoma, first as an adjuvant treatment in 1996 and then as first-line therapy in
1998. By hinding to IFN receptors 1 and 2, the drug triggers multiple dose- and time-dependent immunostimulatory
effects, including upregulation of major histocompatibility complex 1 (MHC1) on tumor cells, enhanced activation of
anti-tumor cytotoxic T lymphocytes (CTLs), depression of T regulatory cells (Tregs), enhanced dendritic cell (DC)
response, and decreased intercellular adhesion molecule (ICAM) expression 2B |n 1996, high-dose (HD) IFN-
o2b became the first adjuvant therapy, approved for use in stage IIB and Ill melanoma patients following surgical

resection. Initial trials demonstrated significantly improved 5-year relapse-free survival (RFS) (37% vs 26%) 431,
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HD IFN-a2b treatment is limited by high toxicity, with studies reporting dose reductions in 28-55% of patients and
toxicity attrition rates of 10-26% (6). HD IFN-a2b remained the standard adjuvant therapy for high-risk melanoma

until ipilimumab approval in 2015

Peginterferon-a2b (Peg-IFN), which has a longer half-life than IFN-a2b, was approved for adjuvant use in 2011
after demonstrating significant improvement in 7-year RFS compared to observation (39.1% vs 34.6%) but, like HD
IFN-02b, could not provide OS benefit B,

Low dose (LD) IFN-02b was approved as first-line therapy for stage Il melanoma patients in 1998 based on a trial
showing improved 5-year RFS (43% vs 51%) and a trend toward improved OS (24% vs 32%) compared to

observation . It does not have significant clinical benefit in mm &1,

Today, IFN-a is no longer a first-line agent for most patients; however, it may still have utility as an auxiliary

immunostimulatory agent, enhancing the clinical benefits of other immunotherapies.

1.2 High Dose Interleukin-2

Interleukin-2 (IL-2) is a T-cell growth factor that leads to cytokine production and preferential expansion of CD8+ T-
cells, NK cells, and Tregs. In 1998, HD intravenous (IV) administration of IL-2 became the first FDA-approved
immunotherapy for the treatment of metastatic melanoma (mM) 29(11). Durable tumor responses have been well
documented in a subset of mM patients, with 5-10% of patients achieving complete response and even more
achieving increased disease stability [LOLLI12] A recent one is of IL-2-responsive mM patients who exclusively
received HD IL-2 for systemic therapy confirms prolonged clinical and survival benefits 23], As with IFN-a therapy,
the use of HD IL-2 treatment is limited by the relatively high incidence of grade 3 and 4 toxicities, which requires
the drug to be administered in an intensive inpatient setting 4. The efficacy of treatment is further limited by the
drug’s activation of anti-inflammatory T-regs, which limit CD8+ activation and effector functions. Drugs targeting
specific subunits of the IL-2 receptor, such as the recombinant IL-2 receptor PBy-biased agonist NKTR-214
(Bempegaldesleukin), have shown promise in the targeted expansion of anti-tumor T and NK cells with limited
expansion of Tregs and dramatically reduced toxicity [12/16][17][18][19][20]

While rarely used as a single or first-line agent today, HD IL-2 remains a second- or third-line option that provides a
possible survival benefit to patients who have failed treatment with first-line agents [2. Many trials combining HD

or low-dose IL-2 therapy with additional therapies are ongoing.

| 2. Immune Checkpoint Inhibitors
2.1. Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) inhibitors

CTLA4 is an immune-inhibitory molecule expressed on the surface of activated T-cells. Together with its immune-
activating counterpart, CD28, CTLA4 creates a critical immune checkpoint that must be overcome to achieve a

durable immune response [22. CTLA4 is naturally upregulated in situations of chronic T-cell stimulation to prevent
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uncontrolled immune reactions and inappropriate development of autoimmunity. In the TME, however, this system
backfires: chronic presentation of tumor antigens to T-cells inhibits the immune system from mounting an anti-

tumor immune response and contributes to the immune evasion that allows continued tumor growth [231241(251(26]

Ipilimumab was approved as the first immune checkpoint inhibitor (ICI) in 2011, the same year that vemurafenib
was approved to block BRAF-mediated growth signaling. Ipilimumab is an anti-CTL4 human IgG antibody. By
preventing the interaction of CTLA4 and its ligands, the drug allows T-cells to bypass the inhibitory immune
checkpoint and mount a response against tumor antigens. Phase Il trials of previously-treated mM patients
demonstrated improved OS compared to gpl00, a melanoma antigen immunostimulant with limited anti-tumor
effects (10.1 vs 6.4 months, p = 0.0026) (2. A metanalysis of pooled data from nearly 2,000 mM patients treated
with ipilimumab (both pre-treated and treatment-naive) reported an increase in the 3-year OS rate to 22% (95% CI
[20, 24%)]), a dramatic increase from ~5% achieved by previous standard-of-care therapies [28. Perhaps even more
importantly, the OS survival curve plateaued after 3 years, maintaining the ~20% OS rate for the entirety of the 10+
year follow-up 28], Thus, ipilimumab became both the first therapy to provide an OS benefit in advanced melanoma

and the first to demonstrate that long-term durable mM disease control is possible with systemic therapy 22!,

While responses to ipilimumab are durable, the response rates are low, ranging from 5-10%. Clinical trials have
provided little insight into possible biomarkers of response. Attempts to improve response rates by adding
ipilimumab to dacarbazine therapy were somewhat successful (15% vs 10%) and demonstrated a survival benefit
over dacarbazine alone (OS 11.2 vs 9.1 months, p<0.001). However, these benefits came at the cost of high
toxicity (rate of grade 3/ 4 AEs: 56.3% vs 27.5%, p < 0.001) B9, Even as a monotherapy, ipilimumab is relatively
toxic with immune-related toxicities occurring in 60-80% of patients, 10-26% of which are grade 3/4 reactions 21,
Perhaps unsurprisingly, severe AEs, which are often immune-related AEs (irAE), were found to be associated with
improved ORRs 22, Ipilimumab is still the only approved CTLA4 inhibitor for mM, though ipilimumab monotherapy
is not a first-line therapy by ASCO guidelines 33,

2.2. Programmed cell death protein 1 (PD-1) and PD-1 ligand (PD-L1) inhibitors

Like CTLA4, PD-1 is an inhibitory immune checkpoint receptor expressed by activated T cells. When PD-1 binds its
receptors, PD-L1 and PD-L2, signaling through the SHP1/2 pathway downregulates the transcription factors
necessary for T-cell effector functions, growth, and survival 24, In healthy tissues, PD-L1 is broadly expressed and
upregulated in response to proinflammatory cytokines 22, Melanoma tumor and TME cells upregulate PD-L1 in
response to tumor-infiltrating lymphocytes (TIL), suggesting that PD-L1 expression is used as a mechanism of

immune evasion by the cancerous cells [BEI[E71[38],

In 2014, two anti-PD-1 monoclonal antibodies, Pembrolizumab and nivolumab, were approved for treatment-
resistant mM after demonstrating superiority over ipilimumab. Early trials of pembrolizumab monotherapy
demonstrated improved 6- and 12-month PFS and RR (6-month PFS: pembrolizumab=47% vs ipilimumab=26%;
12-month PFS: P=74-68% vs 1=58%; RR= P=33%, 1=12%) [29[40 Two and five-year follow-up studies and real-

world findings of pembrolizumab monotherapy confirm its superior OS and durable antitumor immune activity for
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both treatment naive and pre-treated mM patients [“L42143][441[45] - Similarly, the CheckMate 067 trial first
demonstrated that nivolumab monotherapy confers a significantly greater PFS compared to ipilimumab in
treatment-naive mM patients (nivolumab: 6.9 months 95%[4.3, 9.5]; ipilimumab: 2.9 months 95%][2.8, 3.4] 48],
Follow-up data from 2019 then demonstrated superior 5-year OS rates (nivolumab = 44%, ipilimumab = 26%) (7],
Nivolumab has proven to be effective in a range of melanoma tumor subtypes, including both treatment-naive and
pre-treated tumors with either WT or mutant BRAF status 481491,

The two PD-1 inhibitors differ by epitope binding location and target affinity strength but are equally effective as
monotherapies by OS (pembrolizumab = 22.6 mo, nivolumab = 23.9 mo, p = 0.91) and time to next-line therapy or
death (pembrolizumab = 15.7 mo, nivolumab = 10.8 mo, p = 0.16) BYB1, Both are also relatively well-tolerated with
lower rates of grade 3/4 toxicity (14% with pembrolizumab and 4% with nivolumab) than chemotherapy, ipilimumab,

and most targeted therapies 5239, AEs during nivolumab therapy are associated with improved ORRs B9,

Both PD-1 inhibitors are also effective in the adjuvant setting. A five-year one on adjuvant pembrolizumab
demonstrated significant increased RFS, decreased risk of distant metastasis or death (HR 0.60 95%]0.49,0.73]),
and sustained treatment effect compared to placebo RUE3] |nterestingly, adjuvant pembrolizumab also proved
efficacious in patients with PD-L1-negative and undetermined tumors BAB3] |n pre-treated stage IV melanoma
patients with no evidence of residual disease, adjuvant nivolumab alone or in combination with ipilimumab proved
similarly effective in increasing RFS compared to placebo 4. These drugs are the current first-line adjuvant
therapy for resected WT melanoma. Patients with resected BRAF-mutant melanomas may choose between

pembrolizumab, nivolumab, or dabrafenib-trametinib combination therapy as first-line adjuvant therapy 28I,

Optimal utilization of ICIs is hindered by several major challenges, including resistance and poor predictability of
patient response. Approximately 30% of melanoma patients have an innate resistance to PD-1 inhibitors and 25%
of responders acquire resistance during treatment B3E6I57 CTLA4 inhibitors face a similar challenge 27,
Mechanisms of resistance likely include specific tumor cell genetics (loss-of-function mutations in JAK1/2 [38]),
differing expression levels of tumor cell surface proteins (for example, MHC | expression B, alternate ICls 89, and
epigenetic T-cell changes limiting effector function and memory [611). Efforts to increase durability by combining ICls
with auxiliary agents such as PEG-IFN 2 or hydroxychloroquine €2 have had mixed results, with none providing a
clear clinical benefit. Unfortunately, increased toxicity often outweighs any benefit to durability or RR that auxiliary

agents provide.

A few studies have identified markers associated with more successful clinical outcomes. For example,
independent biomarkers associated with favorable OS of mM patients treated with pembrolizumab include high
relative eosinophil count (>1.5%), high relative lymphocyte count (>17.5%), and absence of non-soft tissue or lung
metastasis. Patients meeting none of these criteria have a poor prognosis with pembrolizumab 84, Others have
identified that the occurrence of immune-mediated AEs may be associated with better ORR, OS, and PFS with
nivolumab and ipilimumab monotherapies but not with pembrolizumab 2!, Another—albeit much smaller (n = 40)—
it was also found that PD-L1 expression on circulating tumor cells may also be a predictive biomarker for PD-1

inhibitor response, suggesting that liquid biopsy may provide clinically relevant information during treatment
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selection 88, However, subgroup analyses have demonstrated the PD-1 blockade still provides clinical benefits in
PD-1 negative tumors €. Conflicting evidence on the subject makes using tumor PD-L1 expression as a predictive

marker for PD-L1 inhibitor response or overall prognosis for mM controversial 2681,

2.3. Combination ICI Therapy

Combining CTLA4 and PD-1 blockade is more effective than either class in monotherapy 279 yet carries a
significantly higher risk of severe toxicity. As monotherapies, nivolumab and ipilimumab have grade 3/4 AE rates of
16-27% and 27%, respectively. When used together, this rate increases to 55-71% (48154 Reducing toxicity while
maintaining the clinical benefit of combination therapy may be possible with alternative dosing strategies.
Regimens of standard-dose pembrolizumab (200 mg) with either 150mg or 50 mg reduced-dose ipilimumab show
a meaningful reduction in toxicity (grade 3-5 toxicity rate <26%) without a significant reduction in ORR
(PEM200+IPI50: ORR, 55%, and CR, 16%; PEM200+IP1100: ORR, 61%, and CR, 25% ). In fact, 12-month PFS
and OS rates are actually higher with these regimens (12-mo PFS: 65% for PEMZ200+IPI50; 82% for
PEM200+IP1100; OS: >90% for both) compared to standard dosage and previous alternative dosages (12-mo PFS:
46-53% with standard dosing, 47% and 68% with alternative dosing; 12-mo OS: 73-89%) [UZ2ZEI74TS] | arger

trials are still necessary.

2.4. Novel immune checkpoint inhibitors

The second generation of PD1 and CTLA4 ICls are emerging. These new agents include anti-PD1 antibody HX008
(73] anti-PDL1 monoclonal antibody LP002 (NCT04756934), anti-CTLA4 antibody ONC-392 78, Lymphocyte
activation gene 3 (LAG3) is another T-cell inhibitory checkpoint receptor, the upregulation of which may be a
resistance mechanism to PD1 inhibition therapy 2. Another promising ICI target is TIM-3 (T-cell immunoglobulin
and mucin domain 3). TIM-3 blockade restores anti-tumor functions in ex vivo of previously exhausted NK and
effector T-cells 8 and enhances cancer vaccine-induced antitumor responses in murine melanoma models 2. A
bispecific anti-PD-1 and TIM-3 antibody (RO7121661/RG7769) demonstrated superior anti-tumor TIL activity, IFN-y
secretion, and tumor growth control compared to the monospecific PD-1 antibody in mouse models 9. The agent
has recently entered phase | human trials (NCT03708328).

| 3. Oncolytic virus therapy

Cancer cells achieve a neoplastic phenotype by genetic and epigenetic mutations. These mutations, however,
impair signaling pathways (RAS, WNT, PTEN, RB1, TP53) that are essential for the intra-cellular antiviral response
(81l Recent advances in genetic modification, such as CRISPR, have allowed researchers to create anti-neoplastic

viruses that exploit the vulnerability of mutated cells to viral infection while sparing healthy cells 2],

Talimogene laherparepvec (T-VEC), an oncolytic human herpes simplex virus 1(HSV-1), is the first and only
oncolytic virus (OV) approved for metastatic and unresectable melanoma. When T-VEC is injected directly into the

tumor site, it promotes the secretion of granulocyte-macrophage colony-stimulating factor (GM CSF) to activate
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DCs and increase tumor antigen presentation to T-cells. In the phase 3 OPTIiM trial, 64% of directly injected and
34% of uninjected non-visceral lesions decreased in size by >50%. Complete resolution of lesions occurred in 47%
of injected lesions, 22% of non-injected non-visceral lesions, and 9% of non-injected visceral lesions. When
compared to recombinant GM-CSF administration, T-VEC demonstrated higher durable RR (16% vs 2.1%, p =
0.001), ORR (26% vs 5.7%), and OS (23.3 months, p = 0.051). Severe toxicity rates were only 2% 83, Laboratory
evidence shows that T-VEC has increased efficacy in melanomas with INFy-JAK-STAT pathway mutations 84!,
Since dysregulation of INFy is a common mechanism of resistance to ICI therapy, ongoing trials are investigating
T-VEC as a salvage or combination therapy (NCT04330430, NCT04068181).

Systemic administration of OV therapy is also being explored. However, maintaining viral titers capable of
generating an anti-tumor response after systemic administration has proved challenging to systemic OV
monotherapy (388 Trials are also investigating their role as sensitizing agents or within combination
immunotherapies. Systemic OVs may still have a role as priming agents or within combination therapy
(NCT04152863).

| 4. The Future of Melanoma Immunotherapy

Over the past 8 years, immunotherapy has revolutionized the treatment of mM, offering patients more treatment
options with higher efficacy and less toxicity. Two-year overall survival rates have risen dramatically from ~10% to
~60% 47, Further into the identification of melanoma neoantigens and their immunogenic potentials is essential for
the advancement of the field. The ability to create individualized therapies specific to each patient’s tumor and
immune landscape has the potential to revolutionize melanoma therapy. However, significant advances in rapid
tumor-cell sequencing and vaccine production must first be achieved. In the shorter term, combination therapy and
melanoma vaccines show promise for improving the efficacy, response rates, and durability of current first-line

immunotherapies.

4.1 Sequencing and combining therapies

Using combined therapies to treat mM may be the easiest way to achieve longer-lasting disease control, overcome
innate resistance, evade adaptive resistance to immunotherapy, and optimize clinical response. There is significant
interest in finding the best combinations of the two most effective approved therapy classes—targeted and ICI
therapy (NCT02631447, NCT03235245, NCT02902029, NCT02224781). Such may also address the two major

roadblocks in the deployment of these therapies: rapid resistance development and modest response rates.

4.2 Neoadjuvant therapy

Neoadjuvant therapy is typically used to reduce tumor burden and allow for less extensive surgeries. Before
immunotherapy, neoadjuvant systemic therapy was not standard-of-care for mM treatment, likely because the risks
of delaying surgery outweighed the limited benefits these therapies could provide. However, preclinical data

suggest that this may not be true for immunotherapy B4, especially for therapies targeting T-cell function and
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proliferation. Theoretically, initiating immunotherapy while the major tumor mass is still present may induce a
stronger anti-tumor T-cell response. Indeed, a small feasibility one confirmed these results, demonstrating that
patients receiving neoadjuvant and then adjuvant treatment had significantly more expansion of tumor-resident T-
cell clones than patients who received the same treatment courses exclusively as adjuvant (8. Neoadjuvant
immunotherapy also seems to outperform adjuvant therapy in comparative studies with event-free survival benefit
(891 However, the sample size was small and the toxicity profile of the neoadjuvant arm was disappointing. Larger
trials are currently underway to investigate neoadjuvant regimens that preserve efficacy while limiting toxicity
(NCT02977052) with promising initial results 29,

4.3 Adoptive cell transfer with tumor-infiltrating lymphocytes

In melanoma, the presence of tumor-infiltrating lymphocytes (TILs) is associated with more favorable OS, RFS,
and DSS/MSS R Adoptive cell transfer (ACT) of TILs is the process of expanding autologous lymphocytes in
vitro, usually aided by IL-2, IL-7, IL-15, and/or IL-21, followed by re-infusion to the patient 22. This strategy
circumvents many limitations of other immunotherapies. For example, in vitro TIL culture allows for the selective
expansion of lymphocytes with the strongest effector function and the highest tumor-antigen affinity. Using
autologous cells from resected tumor specimens avoids issues of rejection and allows each treatment to be
uniquely targeted to the patient’s specific tumor antigens 22!, Since expansion and activation occur without the
suppressive effects of the TME, higher numbers of activated lymphocytes (>10*! TILs) can be achieved. This also
allows for pretreatment manipulation of the patient’s immune system to optimize the efficacy of ACT or other
planned immunotherapies without compromising the anti-tumor response. Greater response rates have been
achieved when lymphodepletion proceeds and IV IL-2 follows ACT, both of which promote T-cell homeostatic
cytokine production 241(95]96]

Since TIL-ACT regimens are not yet standardized, the degree of treatment efficacy reported in clinical trials has
varied. Disease progression and overall survival after ACT-TIL are dependent on the expansion of neoepitope-
specific CD8+ T-cells 24, ORRs typically range from 28% - 45% 22, Five-year follow-up found notable durability
and suggests curative potential. Of the 22% CRs, all but one remained disease-free after 3 years, resulting in
100% 3-year and 95% 5-year survival rates (28, |t is especially exciting that these results occurred in challenging
mM cases, in which patients had a median of 3 metastatic sites and had all failed first-line treatments, including
20% who had failed ICI therapy.

Overall, patients who receive TIL-ACT after failing ICI treatment have lower ORRs (56% vs 24%) and OS (28.5 vs
11.6 months) than ICl-naive patients 29, The same is true for patients with BRAF V600E/K mutations who failed
prior targeted therapy (ORR: 21% vs 60% if naive; OS 9.3 vs 50.7 months) 29, This is likely because the poor
immunogenicity and complex resistance mechanisms that allow tumors to evade ICls also limit the efficacy of TIL-
ACT 2 However, an ongoing one of TIL-ACT in treatment-resistant mM has demonstrated an 80% disease
control rate. Considering the higher toxicity rates and similar response rates of other second-line treatments, such

as nivolumab or ipilimumab, TIL-ACT may be the best option for some patients resistant to alternative treatments
[100][101]
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Limitations to ACT-TIL are similar to those of other immunotherapies. As discussed above, resistance remains a
central issue. Similarly, target identification, predictability of immunogenicity, and anti-tumor specificity (sparing
healthy tissues) are essential for ACT-TIL success, but solutions remain in the early stages of development.
Protocols for TIL expansion, antigen identification, pre-treatment immunodepletion, and post-infusion TIL
maintenance (for example, IL-2 dosing) must be optimized for time, cost, efficacy, and safety in order to make this

therapy feasible on a larger scale.

4.4 ACT with T-CARs

Another approach to ACT utilizes autologous T-cells modified ex vivo with cell-surface chimeric antigen receptors
(CAR-T cells). The extracellular component of the CAR is a variable region of a synthetic antibody. It is attached to
a T-cell signaling moiety and co-stimulatory domains, which allows MHC-independent T-cell activation 192 CAR-T
cells can thus target tumors cells that have downregulated MHCs as an immune-escape mechanism 2931, Success
with CAR-T ACT for the treatment of hematologic malignancies sparked the investigation into the therapy for solid

malignancies. However, success in mM clinical trials has been limited

4.5 Melanoma Vaccines

The five major categories of melanoma vaccines currently in development include (1) melanoma cell-targeted
vaccines, (2) dendritic cell (DC) vaccines, (3) peptide-based vaccines, (4) vector-based vaccines, and (5) mMRNA or
DNA vaccines. Unlike preventative immunizations, cancer vaccines are therapeutic, activating the patient's immune
system to incite an anti-tumor response against a known cancer or to prevent disease recurrence in the adjuvant

setting.

Whole-cell vaccines use modified melanoma cells to simultaneously expose the immune system to many potential
melanoma antigens, circumventing the need to identify the most immunogenic antigens for each tumor 194 DC
vaccines are used to directly inject activated or modified DCs into the tumor site to increase anti-tumor T-cell
activation. Peptide vaccines supply tumor-specific or tumor-associated antigen (i.e. gpl100, MART-1/MelanA,
tyrosinase) fragments that can be presented by professional APCs to induce effector T-cell activation. Vector
vaccines use recombinant viral vectors to deliver tumor antigen transgenes directly to APCs. Within the APCs, the
transgenes are expressed to produce high concentrations of tumor antigens that can be presented on both MHCI
and MHCII for enhanced T-cell activation. The simultaneous expression of viral proteins by the delivered vectors
boosts the immunogenicity of the vaccine [2931, Therapeutic mMRNA vaccines have garnered significant excitement
after the advancements and efficacy demonstrated in the COVID-19 pandemic response. While still in the early
stages, mRNA vaccines may have the potential to induce the targeted expression of nearly any protein. Using an
MRNA approach avoids safety concerns associated with DNA and viral vector vaccines. Therapeutic mechanisms
under investigation include enhancing the expression of tumor-specific antigens in DCs, mMRNA-mediated delivery

of specific anti-tumor or anti-ICI antibodies, and programming cancer cells to express suicidal intracellular proteins
[106][107][108]
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4.6 Toll-like receptor agonists

Toll-like receptor (TLR) activation and the resulting pro-inflammatory cytokine release is a critical step in the
induction of both the innate and adaptive immune response 299 As poor immunogenicity continues to limit the
efficacy of melanoma immunotherapies in some patients, TLRs are a logical ancillary agent that provides pro-

inflammatory modulation of the tumor microenvironment

4.7 Predictive markers and personalized medicine

Predicting response rates, toxicity, and durability present a major challenge to current mM immunotherapies. The
melanoma and immune oncology one communities are investing significant resources to identify predictive
biomarkers 19 that would allow treatments to be better optimized for each patient's therapeutic goals.
Identification of tumor neoantigens and predictability of immunogenicity poses another issue. There are over
16,200 distinct class | HLA alleles, each with distinct peptide-binding preferences. Predicting which epitopes will
likely be presented by each patient's APCs is key to the future of immunotherapies such as ACT, OVs, and
melanoma vaccines as this interaction ultimately determines the immunogenicity of a given neoantigen. Some
recent progress has been made: The HLAthena model can predict endogenous HLA-binding peptides with >75%
accuracy 1 The Tumor Neoantigen Selection Alliance (TESLA) developed a bioinformatic-informed model of
tumor epitope immunogenicity capable of filtering out 98% of non-immunogenic peptides with a precision of over
0.70 12 However, no tool currently exists that can accurately predict if a specific neoantigen-HLA combination will
be recognized by an individual's TCRs. More informed models will require a larger and more diverse data set. The
accessibility and affordability of next-generation molecular and functional diagnostics may one day allow each

patient to receive personalized immunotherapy, optimized specifically to their tumor and goals.
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