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With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal

imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical

experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema,

and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms,

have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal

fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular

change analysis, which has potential clinical implications for ophthalmic pathology detection.
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1. Introduction

The human eyes are important organs that can sense light and provide a function of binocular color vision. With the

growth of human age and the influence of external factors, the eyes are susceptible to a few retinal fluid disorders. Retinal

fluid mainly contains intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED). These areas

are vital biomarkers related to the diseases of age-related macular degeneration (AMD) and retinal vein occlusion (RVO).

The retinal fluid occupation area can be detected and segmented from the medical images, which are considered to be

useful for the distinguishing the retinal pathology.

Optical coherence tomography (OCT) is one of the most widely used medical imaging technologies, which has been

rapidly developing in the past three decades. Such an imaging technique was first proposed by Huang et al.  in 1991.

The OCT technique utilizes the basic principle of the low coherent light interferometer to detect the backscattered near-

infrared light and reconstruct the depth profile of the biological tissue sample. Its penetration depth is hardly limited by the

transparent refractive medium of the eye. Furthermore, the OCT technique can identify the anterior segment and display

the morphological structure of the posterior segment. The OCT modality is a good choice for cross-sectional imaging of

the retina because its high resolution facilitates a clear visualization of retinal structures. From the images of the retinal

structure obtained by the OCT modality, the fluid area can be visualized with different reflectivity measures from the

surrounding tissues. The OCT image processing and analysis may help distinguish various conditions of retinal fluids and

evaluate the progression of retina pathology. It has a brilliant prospect in the applications of retinal pathology diagnosis,

follow-up observation, and treatment effect evaluation of intraocular diseases. Some typical segmentations of OCT

images are shown in Figure 1.
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Figure 1. The OCT retinal images from left to right are from the three vendors of Cirrus, Spectralis, and Topcon in the

RETOUCH dataset . The images in the first row are not manually labeled, while the red, blue, and green segmentations

on the second row represent the intraretinal fluid (IRF), subretinal fluid (SRF), and epithelial detachment (PED),

respectively.

Primarily located in the inner and outer nuclear layers, the IRF is regarded as separated hyporeflective cystoid pockets

that could increase the overall retinal thickness. The IRF is one of the important variables of vision loss. The SRF is a

hyporeflective space that corresponds to the clear or lipid-rich exudate between the neurosensory retina and the retinal

pigment epithelium (RPE). The SRF is related to the AMD, and would cause the retinal detachment. As one of the main

indicators of progressive disease, the PED is the separation of RPE from the Bruch’s membrane (BM), which can be

subdivided into the serous, fibrovascular, and drusenoid.

With the rapid development of high-performance computer hardware and sufficient large datasets, the computer vision

and deep learning methods have been dramatically improved and evolved during recent years. In comparison with the

traditional neural network methods, deep learning network architectures normally contain many more hidden layers that

have powerful scalability and hierarchical feature learning capability to automatically extract the morphological features

from raw image data. Since 2016, the deep learning algorithms have made significant impacts on the retinal fluid

segmentation based on OCT images. The most popular deep learning frameworks for the segmentation of retinal fluids

include the convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and hybrid

computational methods. The major strategy of the deep learning is to identify the contours of retinal fluids, and then

commonly solve a classification problem with the semantic context extracted from the OCT images.

2. Deep Learning Applications for OCT Image Segmentation

Image segmentation is one of the research fields of computer vision. Segmentation is the process of combining the

objects of interests in multiple groups in accordance with the join features in an image. Semantic segmentation and

instance segmentation are the two main types of image segmentations. The semantic segmentation categorizes the

objects with the same class label into a unique semantic entity, for example, grouping all humans into one class and all

animals into another class. On the other hand, the instance segmentation distinguishes all instances of the same object

into different classes, i.e., even some similar objects could also be marked with different labels. As illustrated in Figure 2,

the semantic segmentation approach categorizes all of the retinal fluid into one class, meanwhile the instance

segmentation method separates the retinal fluid as the SRF, IRF, and PED, respectively. Image segmentation can quickly

locate a variety of abnormalities in medical images, such as locating pulse tumors  and melanoma detection . It can

also extract the content of interest in medical images, such as segmentations of retinal blood vessels  and the retinal

fluids.
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Figure 2. Two different types of retinal fluid segmentation on the same optical coherence tomography (OCT) image from

the RETOUCH dataset . (a) Semantic segmentation: all of the retinal fluids are segmented into yellow regions; (b)

instance segmentation: the IRF (red), SRF (green), and PED (blue) are segmented separately.

The most frequently used traditional imaging processing methods for retinal fluid segmentation include edge-based

detection, threshold-based segmentation, and histogram-based segmentation. The edge detection method typically uses

the maximum value of the first derivative of the pixels or the zero-crossing information of the second derivative to separate

the boundaries of different regions. Both of the threshold-based segmentation and histogram-based segmentation utilize

the grayscale features of the image to distinguish the object content from the background. The major drawback of these

traditional image segmentation methods is that the different segmentation tasks would require well-devised algorithm, and

sometimes the spatial information of images cannot be effectively utilized. The emerging deep learning methods have the

advantages of automatically combining the low-level features of images to form more abstract high-level features, and

providing higher segmentation accuracy. The following subsections provide a brief description of the popular deep

learning neural network architectures for the OCT image segmentation applications.

2.1. Fully Convolutional Networks (FCNs)

The FCN paradigm was proposed by Shelhamer et al.  in 2017. The ordinary CNN uses the last of a few fully connected

layers to transform the two-dimensional image matrix into one dimension to produce the class labels, or to make object

localizations via regression. The major difference between FCN and CNN is their output layers. The FCN uses a fully CNN

with some transposed convolutional layers to transform the height and width of intermediate feature maps back to those of

the input image. The FCN produces the classification outputs in correspondence with the input image at pixel level, i.e.,

the channel dimension at each output pixel holds the classification results for the input pixel at the same spatial position

. Therefore, FCN’s symmetrical encoder–decoder structure allows the network to process input images of arbitrary

sizes.

As shown in Figure 3, the FCN is composed of the encoder and decoder structures. The encoder is responsible for

mapping an input image to the high-dimensional feature representation. On the contrary, the decoder uses the transposed

convolution to upsample the feature maps, and restores them to the size of the input image when preserving the spatial

information.
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Figure 3. General structures of (a) the fully convolution network (FCN) and (b) the U-Net.

Either CNN or FCN has the major drawback of slow training process due to some operations, such as maxpool.

Therefore, the training of either CNN or FCN usually takes a lot of time, and a high-performance graphics processing unit

(GPU) is required to speed up the network computation. In addition, the FCN is an expensive architecture, because most

of the cost is consumed by the fully convolutional layers in the end.

2.2. U-Net

To improve the segmentation performance, many other modified convolutional networks that propagate the mapped

features from the encoder to the decoder have been developed. One of the most prevailing deep learning architectures for

the image segmentation is the U-Net, proposed by Ronneberger et al.  in 2015. The U-Net adds the skip connections to

propagate the downsampling feature map to the upsampling, and restore the semantic information through feature map

splicing. The U-Net makes the image segmentation with an end-to-end setting, and has the advantages of requiring a

smaller number images for training and also providing the desired localization. Recently, several effective retinal

segmentation networks have utilized the U-Net or its 3D modification as their backbones. Hassan et al.  proposed the

symptomatic exudate-associated derangement network (SEADNet), which employs two novel feature extractors based on

the U-Net. Ye et al.  proposed the CAF-Net, which adds context shrinkage encode and context pyramid guide modules,

without changing the depth of the U-Net, in order to improve the segmentation accuracy. The major drawback of the U-Net

is the trade-off between localization accuracy and the context usage. Typically, larger patches of the U-Net require more

max-pooling layers which may reduce the localization accuracy, whereas smaller patches lead to less context for

visualization. On the other hand, the U-Net also runs slowly due to a large number of overlapping patches.

2.3. SegNet

With a symmetrical design of encoder and decoder, the SegNet  can perform the encoding and decoding with the same

spatial size and same number of channels. The hierarchy decoders of the SegNet use the max-pooling indices received

from the corresponding encoders to implement nonlinear upsampling of their input features. The SegNet architecture

generates the sparse feature maps based on the location information, and then restores the dense feature maps through

convolutions. In addition, the SegNet architecture usually adds a conditional random field (CRF) module to the ending

layer in order to optimize the boundary segmentation outputs. The SegNet has the advantages of improving boundary

delineation and reducing the number of end-to-end training parameters. The unsampling form the SegNet can also be

effectively utilized in other encoder–decoder architectures without a significant modification.

2.4. DeepLab

The standard depth convolutional network would face two issues. First, the downsampling layers of a CNN may extend

the sensory area; however, they would decrease the spatial resolution feature maps for the image segmentation tasks .

Second, the location information of the input image will decrease, and sometimes even disappear when the depth of the

network changes. In order to keep both of the size and space invariance of the feature map, the DeepLab was proposed

by Chen et al.  by incorporating the atrous convolutions, atrous spatial pyramid pooling (ASPP), and CRFs. The
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DeepLab has two major advantages: (1) The atrous convolution operations may speed up the GPU computing; (2)

semantic segmentation accuracy can be improved with the multiscale image representations based on the ASPP.

3. Benchmark OCT Datasets

3.1. RETOUCH Dataset

The RETOUCH dataset [2] originates from the retinal OCT fluid challenge of MICCAI 2017, in which the OCT images

were marked three labels of retinal fluid, namely, IRF, SRF, and PED, respectively. Half of the patients were diagnosed

with the macular edema secondary to AMD, and the other half with the edema secondary to RVO. 

Since the testing data in the competition are not public access, the OCT image data available for all researches actually

remain as the training set. The training data consist of 70 OCT volumes in total. In particular, the numbers of volumes

obtained by Cirrus (Model: 5000), Triton (Model: T-1000/T-2000), and Spectralis OCT systems are 24, 22, and 24, which

have been labeled as IRF, SRF, PED, and normal, respectively. Within each volume, the numbers of B-scan images

acquired with Cirrus (Carl Zeiss Meditec Inc., Jena, Germany), Triton (Topcon Corporation, Tokyo, Japan), and Spectralis

(Heidelberg Engineering Inc., Heidelberg, Germany) are 128 (512×1024 pixels), 128 (T-2000: 512×885 pixels, T-1000:

512×650 pixels), and 49 (512×496 pixels), respectively. These B-scan images contain at least one liquid in a single

volume.

It is worth mentioning that the annotations and volume of this dataset were obtained from the Medical University of Vienna

(MUV) in Austria, Erasmus University Medical Center (ERASMUS) and Radboud University Medical Center (RUNMC) in

The Netherlands. The annotations were manually made on the B-scan plane by the human graders from the MUV and

RUNMC clinical centers. Four graders from MUV were supervised by an ophthalmology resident and trained by two retinal

specialists. Two graders from RUNMC were supervised by a retinal specialist. Most of the relevant studies covered in

here were carried out based on the RETOUCH dataset.

3.2. UMN Dataset

The UMN dataset was collected by the University of Minnesota (UMN) ophthalmology clinic. The dataset contains a total

of 600 OCT B-scan images from 24 exudative AMD subjects [14]. During the acquisition process, each subject performed

approximately 100 B-scan images, from which the 25 B-scan images with the largest liquid area were selected as

samples to export. These scanned images were captured by Spectralis system, through an average of 12-19 frames with

the resolution of 5.88 μm/pixel along the length and 3.87 μm/pixel along the width [14]. The UMN dataset includes the

retinal fluid patterns of IRF, SRF, and PED. Each fluid region was manually annotated and checked by two

ophthalmologists. Unfortunately, this dataset is difficult to implement segmentation algorithms, due to a large number of

sub-RPE and sub-retinal fluid regions located in the eyes of exudative AMD patients. Rashno et al. [14] reported that the

RPE errors in the UMN dataset would adversely affect the retinal pigment epithelium segmentation algorithm.

3.3. OPTIMA Dataset

The OPTIMA dataset [15] was publicly available from the cyst segmentation challenge of MICCAI 2015, and currently has

been widely used for the IRF segmentation tasks. The dataset consists of 30 volumes from 4 OCT devices used in

ophthalmology (i.e., Cirrus,  Spectralis, Topcon, and Nidek). The dimension of each OCT volume is approximately 6×6×2

mm , and the corresponding coordinate was centered on the macula. The dataset was split into two subsets of equal size:

15 volumes for training and the other 15 volumes for testing purpose. Only IRF labels for the training subset have been

annotated by two different professional graders at the Christian Doppler Laboratory for Ophthalmic Image Analysis

(OPTIMA), Medical University of Vienna. Either of the training or testing subset contains three volumes scanned from the

Nidek (model: RS-3000 Advance) device (Nidek Inc., Tokyo, Japan), and the resting 12 volumes of each subset were

equally obtained from Cirrus, Spectralis, Topcon (model: 3D OCT-2000) devices.

3.4. Duke Dataset

The Duke dataset [16] is a public dataset provided by Duke University. It contains 110 annotated B-scan images recorded

from 10 patients with severe diabetic macular edema (DME) pathology and the annotations of eight-layer boundaries.

Each patient performed 11 B-scan images, which were centered on the foveal, and 5 frames on each side of the foveal

(foveal slice and scans laterally acquired at ±2, ±5, ±10, ±15, and ±20 μm from the foveal slice). The dataset also includes

fluid and non-fluid regions with annotations of eight-layer boundaries. Researchers can send requests to the experts to

segment the data, for the purpose of model training and algorithm testing. All of these samples were ethically licensed and

special attention is paid to the anonymity of the images, which were manually labeled by two ophthalmologists for the

retinal layer and fluid area.
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3.5. HCMS Dataset

The HCMS dataset [17] is a public dataset provided by Johns Hopkins University. It includes the right-eye OCT scanning

results of 35 subjects acquired with the Spectralis system. Each volume consists of 49 B-scan images  (each B-scan

including 1024 A-scans and each A-scan consisting of 496 pixels) and nine-layer boundary annotations of 14 healthy

controls (HC) and 21 patients with multiple sclerosis (MS). Similar to the Duke dataset, the HCMS dataset only contains

the manually labeled semantic fluid regions, and cannot be further subdivided. Therefore, researchers have to implement

some necessary preprocessing procedures when using this dataset for validating the segmentation performance.

3.6. Kermany Dataset

In 2018, Kermany et al. [18] constructed the validated OCT and chest X-ray image datasets. The OCT images were

scanned by the Spectralis system, and were categorized into choroidal neovascularization (CNV), DME, drusen, and

normal. The Kermany dataset contains 207,130 OCT B-scan images in total. There are 108,312 OCT B-scan images

recorded from 4686 patients with retinal fluid labels, including 37,206 images with CNV, 11,349 images with DME, 8617

images with drusen, and 51,140 images normal, respectively. The retinal fluid labels of the OCT images were manually

annotated with a tiered grading system. The first tier of graders were undergraduate and medical students, who reviewed

the diagnosis information and discarded the OCT images contaminated by severe artifacts. The second tier of graders

were four ophthalmologists who independently graded the images by making records of the CNV, DME, and drusen

information. The third tier of graders were two senior independent retinal specialists with over 20 years of clinical

experience, who performed the final verification of image labels (Table 1).

Table 1. Public benchmark optical coherence tomography (OCT) datasets for retinal fluid segmentation. AMD: Age-related

macular degeneration, CNV: choroidal neovascularization, DME: diabetic macular edema, IRF: intraretinal fluid, MS:

multiple sclerosis, PED: pigment epithelial detachment, RVO: retinal vein occlusion, SRF: subretinal fluid.

Dataset Data Size Manual
Labeling Disease Web Page

RETOUCH 70 volumes IRF, SRF,
PED AMD, RVO https://retouch.grand-challenge.org

UMN 600 B-scan
images

IRF, SRF,
PED AMD http://people.ece.umn.edu/users/parhi/data-and-code/

OPTIMA 30 volumes IRF AMD, RVO,
DME

https://optima.meduniwien.ac.at/optima-segmentation-
challenge-1/

Duke 110 B-scan
images

Fluid
regions DME https://people.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm

HCMS 49 B-scan
images

Fluid
regions MS http://iacl.jhu.edu/Resources

Kermany 108,312 B-scan
images

Fluid
regions

CNV, DME,
drusen https://data.mendeley.com/datasets/rscbjbr9sj/2
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