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Carbon fiber-reinforced polymer (CFRP) composites are used in a variety of applications such as aircraft, automobiles,

body armors, and the sports sector owing to their ultra-strong and lightweight characteristics.
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1. Introduction

Owing to their low specific weight, high stiffness, superior temperature and corrosion resistance, and ease of

processability, carbon fiber-reinforced polymeric (CFRP) composites are used in broad range of applications from

aerospace to marine industries . CFRPs display excellent tensile strength; however, the brittleness, crack-prone matrix

and the fiber–matrix interface with a weak adhesion usually lead to a failure of the composite structures in terms of

delamination and catastrophic failure . In this direction, carbon nanostructured forms (CNFs) can help to overcome

these criticalities. The use of CNFs in bulk epoxy resins and their composites has been pursued by many authors, not

only to increase the mechanical performance of the resulting composites but also to confer them functional properties,

such as de-icing, self-sensing, and self-healing, or to save energy during the manufacturing process . Multi-wall

carbon nanotubes (MWCNs) have been successfully incorporated in CFRCs, imparting them electrical conductivity,

whose value depends on the process adopted for the manufacturing . Graphene-based nanoparticles are expected to

further improve, with respect to CNTs, some functional properties depending on the thermal conductivity of the composite

(thermal management), and to reduce the humidity content in composites based on epoxy resins . For these reasons,

many authors have made tremendous efforts to obtain graphene in the form of single layers, for example, training to

completely exfoliate graphite particles (to reach almost 100% of exfoliation). Despite the large efforts made to obtain and

employ perfect and almost single graphene layers, no high-performance materials, in terms of electrical properties and

related functional properties, have been obtained. This is because defect-free single graphene layers tend to reassemble

during the steps of nanocomposite manufacturing. To avoid reassembling arrangements, functionalization procedures are

needed. This allows the attaching of chemical groups to the graphene layers able to prevent the re-assembling because

of steric and energy factors. If the functionalization is performed through functional groups covalently bonded to the single

graphene layers, the reassembling phenomena are prevented, but the change in the hybridization state of the carbon

atoms, from sp  to sp , in single layers results in the partial loss of the phenomenon of electron delocalization of carbon

nanoparticles and, as a consequence, in the impoverishment of their electronic properties . To meet this scientific and

technical challenge, it is possible to use graphene oxide nanosheets, which are constituted of the stacking of different

graphene layers (able to manifest the desired phenomenon of electron delocalization) and polar functional groups on the

edges of these thin graphene-based blocks. GO nanoparticles dispersed in the polymeric matrix are expected to also

improve the interfacial adhesion between woven carbon fibers and the epoxy matrix during the impregnation process of

the woven fibers. In fact, GO nanoparticles are composed of polar groups, especially on the edges of the nanosheets,

able to provide strong interaction with the hosting cured epoxy matrix (composed of a large number –OH polar groups)

and the “core” part, similar to the structure of CFs, therefore being able to establish attractive interactions with the

reinforcing CFs of the woven fibers. This is a hot topic worth investigating for the obvious applicative implications. There

are many relevant papers in the literature that have revealed that the presence of GO nanosheets in the epoxy resin

should allow the conferring of functional properties to the resin, whereas, in other papers, GO should promote better

adhesion between carbon fibers and the polymeric matrix. This research aims to investigate recent advances achieved in

this last direction. To improve the interfacial properties of the composites, a resilient interfacial adhesion between the fiber

and matrix plays a significant role. In recent years, a series of methods have been introduced to improve the interfacial

adhesion between the fiber and matrix such as the coating of fibers, sizing, 3D weaving, and tufting . Unfortunately,

these approaches are only applicable to textile laminates made with resin transfer molding (RTM) procedures, and are

thus not applicable on prepreg laminates . The poor defective surface of carbon fiber lacks the functional groups on

[1]

[2][3]

[4][5][6][7]

[8][9]

[10]

2 3

[11]

[12]

[13][14]



its surface and thus has insufficient wettability and interaction with the polymer matrix. Functional groups such as hydroxyl

–OH, carboxyl –COOH, and carbonyl –CO are added on the surface of CFs or in the epoxy matrix to boost their

functionality as a CFRP reinforcement . The effect of the functionalization of carbon fibers or epoxy with nanoparticles

such as carbon nanotubes, nano clay, and graphene nanoplatelets has been investigated in detail 

. However, control of the carbon nanotubes (CNTs) and nano clay dispersion is difficult and not cost-effective. In

addition, their agglomeration onto a fiber surface leads to reductions in the glass transition temperature (T ) and

mechanical properties of the developed composites . Recently, to attain good interfacial adhesion, the modified

graphene was significantly incorporated in CFRP composites . The improvement in the thermal conductivity of the

CFRP by grafting carbon fibers with a 3D graphene network was examined, where an increase in thermal conductivity of

about 165% in comparison with that of pure CFRP was observed for the graphene-incorporated composites . The

fatigue behavior and mode I fracture toughness of CFRP functionalized by graphene nanoplatelets (GNPs) was

investigated, and it was observed that with 0.1% of GNPs, the mean fatigue life and mode I interlaminar fracture

toughness increased to 155% and 40%, respectively . A strong interaction was observed in the case of GO-

incorporated composites as compared to unfunctionalized graphene sheets-incorporated composites due to the

abundance of various functional groups . The use of graphene oxide functionalization with polymers has gained

momentum after this development. The functionalization of graphene oxide resulted in an improvement in interfacial

adhesion in terms of preventing delamination and crack propagation. 

2. Applications of Carbon Fiber-Reinforced Polymer (CFRP) Composites

From aerospace to automotive industries, carbon fiber-based polymer composites can contribute a vital role as these

applications necessitate a lightweight material with outstanding mechanical performance, high stiffness, corrosion

resistance, low coefficient of thermal expansion, chemical resistivity, and excellent electrical and thermal conductivity.

Temperature changes and adverse atmospheric conditions, such as saline water and high wind, must be tolerated by the

developed composite materials. Multifunctional composites might be quite intriguing in this scenario; thus, combining the

excellent mechanical qualities of CF/epoxy composites with other embedded functionalities such as temperature

management , energy storage, and sensing properties  would result in a technical breakthrough in the applicability of

carbon-based composites . In the design of airplanes and spacecrafts, the risk of destruction due to impact was well

understood. To negotiate these effects, the introduction of CFRP composites is increasing rapidly; for example, an A-320

aircraft has a 21.5% composite usage to its total weight, and a Boeing 787 and Airbus A350 have 50% of its total weight

comprised of CFRP for different parts including the tail cone, center wing box, vertical and horizontal tails, and pressure

bulkheads. On the other hand, the usage of CFRP composites was also started in the field of military aircraft due to their

outstanding performance and the excellent strength-to-weight ratio . Figure 1 depicts the sectors for the application

of CFRP composites.

Figure 1. Applications of carbon fiber-reinforced polymer composites .

The use of CFRP composite laminates has also been initiated in the area of civil engineering and structural parts such as

stock cables for bridges and suspension bridges. The cables are used for replacing the conventional steel cables

throughout the world due to their nonrelaxing, noncorroding, light-weight quality, and stress-free behavior.  Table 1
represents the comparison of properties of CFRP cables in comparison with that of conventional steel cables. It has been

found that the CFRP cable shows excellent mechanical performance in terms of elastic modulus, tensile strength, and

density .

Table 1. Comparison of CFRP and steel cable properties .
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Property Tensile
Strength

Elastic
Modulus

Elongation at
Rupture Density Thermal Coefficient of

Expansion
Poisson’s
Ratio

Steel cable 1670 N/mm 205,000
N/mm 6.0%

7850
kg/m 1.2 × 10  K 0.3

CFRP
Cable

2700 N/mm 160,000
N/mm 1.6%

1600
kg/m 0.2 × 10  K 0.3

The automotive sector also started using CFRP composites due to their anisotropic distribution of mechanical properties,

advantageous for the fabrication of certain engine components such as conrods R4 (82/71). The material is made up of

two monolayer polymers with fibers, oriented differently. The conrod’s main body and cap are constructed of two

monolayer polymers that are combined in various quantities . In today’s environment, there is a growing demand for

lightweight, flexible, and durable body armor that can provide enhanced ballistic protection, particularly against the

increasingly lethal threats that soldiers will face. CNTs and graphene, which are among the world’s strongest and stiffest

materials, will certainly contribute in the development of ultra-strong, massive-energy-absorber, lightweight, and robust

composites for future body armor construction. High-performance carbon fiber-reinforced polymers functionalized with

graphene-based nano-fillers are currently used in ballistic systems as hybrid nanocomposites to construct the ultimate

body armor of the future .
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