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Due to the functional limitations of a single UAV, UAV clusters have become an important part of smart cities, and

the relative positioning between UAVs is the core difficulty in UAV cluster applications. Existing UAVs can be

equipped with satellite navigation, radio navigation, and other positioning equipment, but in complex environments,

such as urban canyons, various navigation sources cannot achieve full positioning information due to occlusion,

interference, and other factors, and existing positioning fusion methods cannot meet the requirements of these

environments. Therefore, demand exists for the real-time positioning of UAV clusters. Aiming to solve the above

problems, multisource fusion UAV cluster cooperative positioning using information geometry (UCP-IG), which

converts various types of navigation source information into information geometric probability models and reduces

the impact of accidental errors is proposed, and the Kullback–Leibler divergence minimization (KLM) fusion method

to achieve rapid fusion on geometric manifolds and creatively solve the problem of difficult fusion caused by

different positioning information formats and parameters is presented.

cooperative positioning  multisource fusion  information geometry  UAV

1. Introduction

The UAV has the characteristics of not being affected by terrain, fast speed, small size, etc. Therefore, it has

shown great development prospects in the fields of logistics transportation, security monitoring, information

collection, and traffic guidance in smart cities . However, due to load limitations and the occlusion effect of urban

canyons, a single UAV provides low coverage, which greatly limits its application in smart cities. While a lightweight

UAV cluster has attracted more attention because of its wide coverage and high transportation efficiency, the main

direction of UAV development is towards applications in cities . However, unlike a single UAV, the positioning

between UAVs in a cluster is the core difficulty in the application of UAV clusters. Compared with traditional node

positioning, UAV cluster positioning has the characteristics of a three-dimensional position, large dynamics, and

easy interference. The main positioning information of a UAV cluster comes from satellite navigation and inertial

navigation, supplemented by wireless base station navigation, laser navigation, visual navigation, and other

technologies. Due to inherent problems, various types of navigation sources cannot realize the positioning service

of a UAV cluster in the whole area and environment. For example, navigation satellites are easily blocked by urban

canyons, resulting in the loss of UAV navigation signals ; wireless base stations have limited navigation

transmission distance and cannot provide positioning services outside the area ; LiDAR is greatly affected by

weather and atmosphere; the beam is narrow, and performance drops significantly in cloudy, rainy, and foggy
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environments ; and visual navigation requires a huge amount of image processing in complex and dynamic

environments, exhibits poor real-time performance, and has a large impression of the light-receiving environment

. Therefore, using the relative position of a UAV cluster to realize the rapid fusion of distributed multisource

navigation system information is the main problem of UAV cluster positioning.

The existing distributed node positioning method mainly realizes cooperative information fusion positioning through

ranging, direction finding, and information interaction. This fusion method mainly includes two categories. The first

category is the fusion of positioning data represented by neural networks , and the other is the fusion of

localization results represented by the Kalman filter . Both types of algorithms have problems of high

computational complexity and poor real-time performance, and thus they are not suitable for the cooperative

positioning of UAV clusters. Therefore, using the various types of navigation sources independently distributed in

the UAV cluster to achieve fast and high-stability fusion is the main problem of the coordinated positioning of the

UAV cluster.

As the current mainstream positioning information fusion algorithm, the Kalman filter and its extended series of

filtering algorithms  can not only estimate the time domain information of stationary random processes but can

also estimate nonstationary random processes. However, the positioning information is output by different types of

navigation sources. The format and frequency of the parameters are completely different, resulting in high

computational complexity and a long fusion time, which cannot meet the needs of UAV clusters for performing the

rapid fusion of different types of navigation sources. With the rapid development of artificial intelligence, intelligent

information fusion by neural networks has also developed rapidly, and these can realize the rapid fusion of various

types of navigation information, but they also have the problems of requiring a large amount of data and exhibiting

poor real-time performance. To solve the problem of difficulty in fusion positioning caused by factors such as the

time-space asynchrony of distributed multitype navigation source information in UAV clusters, the loss of navigation

source information, and the rapid movement of UAV clusters, this entry proposes a multisource information

geometry-based approach. The main innovation points of the fusion UAV cluster positioning method are as follows:

The information from various navigation sources carried by the UAV cluster is creatively transformed into an

information probability model, the time and frequency parameters of various types of navigation information of

the UAV cluster are unified, and a simulation scenario is established to verify the model.

A multisource fusion UAV cluster localization method based on information geometry is proposed. The method

utilizes the correlation between the information probability of the UAV navigation sources and the positioning

accuracy, calculates the accuracy probability function of the navigation source information, establishes the

probability geometric manifold of the navigation source information, and fuses multiple probability density

functions to obtain the positioning result.

Simulation tests of the proposed UCP-IG model in ideal scenarios, sudden loss of navigation information

scenarios, and random motion scenarios are carried out. The test results show that the UCP-IG method
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proposed in this entry can effectively improve the stability of UAV clusters. In the case of a loss of human–

machine navigation information, errors can also be effectively suppressed.

2. UAV Cooperative Positioning

With the application of UAVs in unmanned transportation applications, traffic management, and other basic core

projects of smart cities, the relative positioning between UAV clusters has become the core basis for UAV cluster

applications . With the improvement of the accuracy of the GNSS system and the enhancement of the

navigation signal by low-orbit communication satellite systems, satellite navigation has become the main method of

the cluster positioning of UAVs. However, due to the serious occlusion of urban environments, the signals of some

UAVs will always be lost during the flight of a UAV cluster. The development of the coordinated navigation and

positioning of UAV clusters has become a hot topic for UAV cluster applications.

UAV cooperative positioning mainly evolved from wireless sensor network cooperative positioning. Early UAV

cooperative positioning methods mainly achieved cooperative positioning through the LS method , MSE method

, etc. This kind of method has the advantage of fast positioning speed, but it is easily disturbed by environmental

errors.

Due to the jittery characteristics of UAVs, reducing the error has become the main problem of UAV positioning.

Techniques such as Bayesian estimation  and non-Bayesian estimation  are used for UAV cooperative

positioning, but the disadvantage of Bayesian estimation methods is the large communication and computational

overhead required. The research work discussed in  proposed a cooperative positioning fusion technique based

on a particle filter (PF), but it is difficult to solve the problem of particle degradation and depletion . To this end,

 and  proposed a positioning estimation method based on the extended Kalman filter (EKF) and unscented

Kalman filter (UKF), respectively. Non-Bayesian estimation cooperative positioning methods mainly include the

least squares (LS)  estimation method and the maximum likelihood (ML)  method. The research work

discussed in  uses weight compensation combined with the LS method to achieve UAV cluster positioning,

which can reduce the impact of environmental errors. The study proposes a new hybrid cooperative positioning

scheme based on distance and angle measurement; that is, a modification of the TOA-AOA-based and AOA-RSS-

based linear least squares (LLS) hybrid scheme. Based on the ranging information between the man–machine and

base station, an optimized version of LLS estimation was proposed, which further improves the positioning

performance but limits the scope of use. Tomic S et al.  proposed a new method based on received signal

strength (RSS) and convex optimization. By deriving nonconvex estimates, the search problem of the global

optimal solution was solved, but it could not meet the high mobility characteristics of UAVs, and the stability of

positioning accuracy was poor.

In recent years, neural networks have also been used in the field of cooperative positioning due to their advantages

of arbitrary nonlinear mapping of input and output. The research work discussed in  used BP neural-network-

assisted EKF and UKF to achieve cooperative positioning, and the results showed that using a BP neural network

to optimize nonlinear filtering could improve filter estimation performance. The research work discussed in 
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proposes a layered sensor fusion method with an artificial neural network (ANN) to solve the self-localization

problem of mobile robots. This method uses octagonal sonar, digital compass, and wireless network signal strength

measurement to determine the position of autonomous mobile robots. Multi-layer perceptron (MLP) is used in

combination with supervised learning and back-propagation techniques to train the network by layered fusion steps

and determine the robot’s position on the map. However, this type of method needs to train various parameters and

the calculation amount and time are too large, so it cannot meet the real-time requirements of UAV cluster

cooperative positioning.

Therefore, how to realize the cooperative positioning of UAV clusters in an unknown, complex, and dynamic

environment and how to maximize the real-time performance of the algorithm and reduce the amount of calculation

require further research. For this reason, an increasing number of scholars have introduced graph theory

knowledge into cooperative positioning. For instance, Ihler A proposed the nonparametric belief propagation

algorithm . The basic idea of this algorithm is a method based on a graph model, which models the localization

problem as an inference problem, allowing it to perform a distributed estimation process, but it has problems of

high computational complexity and poor real-time performance. Starting from estimation theory and factor graphs

, Wymeersch H et al. proposed a distributed cooperative positioning algorithm, SPAWN (sum-product

algorithm over a wireless network), which transformed the node localization problem in cooperative networks into

variables. The approximate edge posterior distribution of variable nodes is obtained by updating and transmitting

confidence information on the factor graph. However, the algorithm requires a large amount of computation and

large communication bandwidth and has poor positioning performance in dynamic scenarios. On the basis of graph

theory, information geometry is widely used as an effective tool for solving nonlinear and random problems.

Compared with the mathematical theory of the Euclidean framework, information geometry theory can more

effectively solve some nonlinear and random problems in the information field. Information geometry methods have

made considerable progress in statistical signal processing, parameter estimation, and filtering. Reference 

refers to the concept of information geometry to radar signal processing and proposes a corresponding radar signal

detection method, but how to use the information geometry distance to realize multi-UAV cooperative positioning is

currently unaddressed. This entry takes advantage of the unified parameters of the information geometric model,

combined with the K–L fusion method, which can effectively improve the positioning stability of the UAV cluster and

the ability to suppress mutation errors.

3. System Model

Due to the limited transportation weight and quantity of a single UAV, distributed UAV clusters can greatly improve

transportation efficiency and reduce costs, but the mutual distance and control between clusters require high-

precision, real-time positioning information support. The cooperative positioning network of the UAV cluster studied

in this entry is shown in Figure 1.

[29]

[30][31][32]

[33]



Multisource Fusion UAV Cluster Cooperative Positioning | Encyclopedia.pub

https://encyclopedia.pub/entry/37709 5/9

Figure 1. Cooperative positioning network of a UAV cluster.

In Figure 1, A , A , A , and A  all represent UAVs, while A  represents the n-th UAV. UAV positioning can be

realized by a base station or cluster UAV. In the figure, the blue link represents the ranging communication link

between UAVs. Meanwhile, the UAV is equipped with a satellite receiver and inertial measurement unit (IMU),

which can receive satellite navigation signals and information such as speed and acceleration.

The essence of information geometry is to study the intrinsic geometric properties of probability distribution

manifolds. The basic problems of probability theory and information theory are geometrized by using the differential

geometry method. Different types of probability distribution function families have corresponding statistical

manifolds with certain structures. A statistical manifold can be understood as a surface in the parameter space of

the probability density function. Every point on it corresponds to a specific probability distribution, and the

coordinates of points are related to the parameters of the probability distribution. The form of each probability

distribution function determines the relationship between its neighboring probability distribution function and the

spatial structure it constitutes. The relationship between the probability distribution and statistical manifold is shown

in Figure 2. In Figure 2, is the sample space of navigation source information, its probability density function is , is

the parameter vector of , is the vector space of parameter , and is the statistical manifold with the parameter as the

coordinate.

1 2 N-1 N N



Multisource Fusion UAV Cluster Cooperative Positioning | Encyclopedia.pub

https://encyclopedia.pub/entry/37709 6/9

Figure 2. Schematic diagram of the statistical manifold.

In the multisource fusion scenario, combined with information geometry theory, the probability distribution functions

of multiple UAV navigation information sources can be mapped to the Riemannian space as a family of functions to

form a statistical manifold, and each point on the statistical manifold represents a probability distribution function.

The multisource fusion algorithm based on information geometry theory can process heterogeneous data with

better real-time performance, fault tolerance, and positioning accuracy.

The information fusion of a target UAV includes two parts: the target UAV’s own information fusion and the

cooperative information fusion from its neighboring UAVs. Each UAV merges the location information of its own

multiple navigation sources, and then the target UAV iterates the information fusion through the location

information provided by the neighbor UAVs and combines the ranging information to reduce the error. Figure 3

shows the multisource fusion process based on information geometry. Assume that UAV A  is the target UAV that

needs to obtain positioning information. First, each information source of UAV A  is processed, a statistical

manifold is established, the navigation information is mapped to the manifold, and the probability density function of

each information source is obtained. Then, combined with the probability density function of location information

provided by each neighboring UAV, the multisource fusion algorithm based on information geometry replaces the

geodesic distance of the correlation matrix of the two probability density functions on the manifold by K–L

divergence, obtains the lower bound of the fused objective function, and the real-time positioning result of target

UAV A  is finally obtained.
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Figure 3. Flow chart of UAV cluster multisource fusion based on information geometry.
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