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high modulation speed and low power consumption. Based on the working mechanism, free-carrier-dispersion-based

phase shifters fall into three categories: carrier injection, carrier depletion, and carrier accumulation.
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1. Introduction

The past few decades have witnessed a huge growth in silicon photonics. Photonic integrated circuits (PICs) have been

widely used and studied in areas such as telecommunications, lab-on-a-chip sensing, and quantum computing 

. Benefitting from the broadband optical transparency (from 1.3 μm to 8 μm), high refractive index (n = 3.4757 at λ =

1550 nm, room temperature), and compatible manufacturing process with matured complementary metal–oxide

semiconductor (CMOS) technologies , the silicon-on-insulator (SOI) substrate has become one of the most

important platforms for on-chip PICs . To meet the rapidly increasing demand for data communication, optical

path routing, and optical signal modulation, passive and active optical components based on the SOI platform have been

extensively studied in the past few decades . Furthermore, the commercialization of silicon photonics

has begun to take shape . Some matured and advanced commercial foundries, such as the Advanced Micro Foundry

(AMF) from Singapore, the American Institute for Manufacturing Integrated Photonics (AIM) from the United States, and

the Interuniversity Microelectronics Centre (IMEC) from Belgium, have made great efforts and built promising PIC

component libraries, including strip and rib waveguide, power splitter, grating coupler, waveguide crossing, directional

coupler, micro-ring resonator, thermal-optical phase shifter, and so on. With intensive efforts, the propagation loss of

silicon wire waveguide has been reduced to below 1.0 dB/cm by researchers, which paves the way to build large-scale

PIC applications . Moreover, packaging technology has been extensively explored , which leads to a high-

level chip-scale integration including on-chip components such as photodetector (PD), modulator, laser source, and fiber-

to-chip coupler.

With the development of dense PICs, effective and high-performance on-chip active components are urgently needed to

realize complex on-chip functions. Phase shifters are one of the most important components in building PICs. A building

block that offers two inputs and two outputs capable of power tuning and phase shifting can be considered a fundamental

unit in large-scale PICs . The phase shifter here refers to modulating the phase of the transmission wave only without

changing the amplitude, where the power tuning function can be obtained by forming the interferometer based on phase

shifters. Using enough amounts of such building blocks, an arbitrary linear optical system can be built. Using well-

integrated phase shifters, researchers have reported various applications such as neuromorphic computing systems 

, optical phased arrays , light detection and ranging (LiDAR) systems , on-chip spectrometers 

, photonic accelerators , and so on.

2. Free-Carrier-Depletion-Based Phase Shifter

Free-carrier-dispersion-based phase shifters are favored in the field of telecommunications and data centers due to their

high modulation speed and low power consumption. Based on the working mechanism, free-carrier-dispersion-based

phase shifters fall into three categories: carrier injection, carrier depletion, and carrier accumulation. In this section,

researchers introduce the free-carrier-depletion-based phase shifter only. Some outstanding reviews of free-carrier-based

phase shifters can be found in .

2.1. Modulation Principle

Free-carrier-depletion-based phase shifters usually modulate the phase of transmission wave by changing the carrier

concentration in the core material of the bus waveguide. The refractive index changes (Δn) and carrier absorption (Δα)
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caused by free-carrier concentration change can be described by the Drude model :

(1)

and

(2)

where  e  refers to the elementary charge, λ is the laser wavelength,  c  is the light speed,  ε0  denotes the vacuum

permittivity, n represents the unperturbed refractive index of the material, ΔN is the charge carrier density, m* refers to the

carrier effective mass, and the subscripts e and h indicate quantities related to electrons and holes, respectively.

Some free-carrier-depletion-based phase shifter structures are shown in  Figure 1. Rib waveguide is usually used,

benefitting from a pair of thin film slabs. The cross-section is divided into an enhanced doping concentration region

(p++/n++ region), a doping concentration region (p+/n+ region), and an intrinsic region (i region). Doping area distributions

and doping concentrations are the most important parameters, which affect the modulation efficiency (V ·L ) and

waveguide propagation loss (α). Electro-optic bandwidth is regarded to represent the modulation speed.

Figure 1. Various structures of free-carrier-depletion-based phase shifters. (a) Phase shifter with offset carrier doping, (b)

PIPIN phase shifters, (c) phase shifter with counter doping at corners, (d) phase shifter with epitaxy fabrication, (e) phase

shifters with substrate removement, (f) interleaved structure phase shifter, (g) zig-zag structure phase shifter.

2.2. Typical Work in Free-Carrier-Depletion-Based Phase Shifter

Various configurations have been proposed to balance and optimize modulation efficiency, waveguide propagation loss,

and modulation speed. The waveguide propagation loss can be effectively reduced by avoiding the overlap between the

waveguide mode field and the doping area. Patel et al. proposed a phase shifter with an offset doping area, which aims at

reducing the optical loss and improving the modulation efficiency . The target doping concentration of the p type region

was 7.8e17, which is lower than that of the n type region (2.1e18). The insertion loss of the 500 μm long doping

waveguide embedded in a Michelson interferometric modulator was characterized as 4.7 dB, and a 0.72 V·cm V ·L  was

obtained at 1V bias voltage. Figure 1b shows a PIPIN diode phase shifter proposed by Ziebell et al. . By selectively

doping the waveguide (8e17 in the p+ region, 1e18 in the n+ region, and 3e17 in the p region), the transmission loss was

[39]

Δn = −
e2λ2

8π2c2ε0n
⋅ (

ΔNe

m
*
e

+
ΔNh

m
*
h

)

Δα =
e3λ3

16π3c3ε0n
⋅ (

ΔNe

m*2
e μe

+
ΔNh

m*2
h μh

)

π π

[40]

π π
[41]



reduced while ensuring effective modulation efficiency and modulation speed. The experimental results showed that for a

0.95 mm long phase shifter embedded in the MZI, the insertion loss was extracted as 2.5 dB, and the V ·L  was 3.5

V·cm. The modulation speed was measured as 40 GHz. Tu et al. demonstrated the carrier compensation method and set

the concentration of the doped waveguide at the corner to zero , thereby reducing the waveguide propagation loss to

1.04 dB/mm without sacrificing the modulation efficiency (Figure 1c). The V ·L  was measured as 2.67 V·cm at 6 V bias

voltage. Azadeh et al. constructed a silicon–insulator–silicon capacitive phase shifter that greatly reduced the doped

waveguide area, as shown in Figure 1d . Through injecting a high concentration of carriers (7e18 in the n+ region and

6e18 in the p+ region), the waveguide propagation loss was obtained as 4.2 dB/mm with the modulation efficiency of 0.74

V·cm at 2V bias voltage. The modulation speed was measured as 48 GHz.

In addition, Li et al. proposed an ultra-fast free-carrier-deletion-based phase shifter by removing the silicon substrate

beneath the bus waveguide, which can reduce the useless power consumption in the substrate and thus improve the

modulation bandwidth (Figure 1e) . The 3 dB EO bandwidth reached up to 60 GHz at the DC bias voltage of −8 V. The

waveguide propagation loss was 2.2 dB/mm and the modulation efficiency achieved was 1.4 V·cm.

By maximizing the overlap between the depletion region and the optical mode, the modulation efficiency can be improved.

As shown in  Figure 1f,g, interleaved junctions and zig-zag structures were proposed, which demonstrated modulation

efficiency of 2.4 V·cm and 1.7 V·cm, respectively .

2.3. Discussion

Performances of some typical free-carrier-depletion-based phase shifters are summarized in Table 1. Through optimizing

the concentration and distribution of free carriers in the bus waveguide, research has been carried out to balance the

modulation efficiency, modulation speed, and propagation loss. Phase shifters are widely used in the data transmission

and telecommunication fields, benefiting from the fast modulation speed.

Table 1. Performance summary of free-carrier-depletion-based phase shifters.

Doping
Distribution

P Conc.
(cm )

N Conc.
(cm )

Modulation
Efficiency
(V·cm)

Propagation Loss
(dB/mm)

Modulation Speed
(GHz) Ref.

PN junction in the center of the
waveguide

5 × 10 5 × 10 1.9 (3V) 1.2 >20

7 × 10 5 × 10 3.5 (3V) 1 10

1 × 10 3 × 10 1.59 3.2 27

2 × 10 2 × 10 1.7 (3V) 1.2 12

2 × 10 2 × 10 1.2 (3V) 4.5 4.3

4 × 10 1.3 × 10 3.2 (0–4V) 1 46

Offset PN
junction

2 × 10 3 × 10 14.3 - 8

2 × 10 6 × 10 11 (3V) - 19

2 × 10 2 × 10 1.8 (3V) 1.6 27.8

3 × 10 1.5 × 10 2.8 (4V) 5 40

Interleaved
waveguide

2 × 10 2 × 10 1.7 (3V) 1 20

2 × 10 2 × 10 1.4 (3V) 1.7 11.8

2 × 10 2 × 10 0.8 (4V) 3.5 12.6

5 × 10 1 × 10 2.4 2.1 20

Zig-zag
waveguide

2 × 10 4 × 10 - - 23

PIPIN junction
8 × 10 /
3 × 10

1 × 10 3.5 1 40

Corner doping concentration - - 2.67 (−6V) - 8.9
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Doping
Distribution

P Conc.
(cm )

N Conc.
(cm )

Modulation
Efficiency
(V·cm)

Propagation Loss
(dB/mm)

Modulation Speed
(GHz) Ref.

Wrapped PN
junction - - 0.52 (2V) - 50
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