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Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological

and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues

targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the

prominent segments of biological sciences that will be improved by nanostructure innovations. Nanoparticles,

nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering

and regeneration.

nanoparticles  nanodisks  scaffolds  nano-biomaterials and retina

nanoscaffolds and retinal regeneration  nanoparticles and retinal regeneration

1. Introduction

To overcome the limitations of conventional eye drops and of intraocular invasive injections, several ophthalmic

formulations have been proposed, such as drug-loaded nanoparticles/nanocarriers. Nanoparticles, which are

submicron-sized particles ranging from 10 to 1000 nm, can provide a versatile platform for drug delivery. Drugs can

be loaded into such nanoparticles by attachment to the matrix, or the drug can be dissolved, encapsulated, or

entrapped within their nanomorphologies. In various stages of clinical studies, the Food and Drug Administration

(FDA) has approved nearly 250 nanomaterial-based medical products . With recent advancements,

nanomedicine approaches to the regeneration of tissues have been particularly focused on using certified

functional nanomaterials. These engineered nanomaterials not only deliver cells and tissues but also monitor tissue

regeneration processes in real time, thereby improving the overall therapeutic efficiency. The compatibility of

biological organs with various nanomaterials, such as nanoparticles (NPs), nanowires (NWs), and hybrid

nanostructures, has enhanced the probability of their use in biomedical applications, especially in retinal

regeneration (Figure 1) . Among these, nanoparticles such as gold NPs (AuNPs) and magnetic iron

oxide nanoparticles (MIONPs) are widely used in preclinical and clinical settings due to their well-established

imaging and therapeutic properties . Furthermore, because of their physical and chemical properties,

nanoparticles have recently been introduced as contrast enhancement agents for many imaging modalities such as

MRI , fluorescence imaging , photoacoustic imaging , ultrasound imaging, and computed

tomography (CT) . In recent years, modified nanoparticles have been in high demand for

their use in clinical practices for in vitro metabolic assays. In this context, studies have shown that gold

nanoparticles deposited on the plasmonic chip and a porous silica-based plasmonic nanoreactor are useful for the

metabolic analysis of biofluids . Some studies have used nano-biomaterials to treat antibiotic-resistant
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bacterial infections . Furthermore, the use of platinum nanoreactor, polymer@Ag-assisted, and bimetallic alloy-

based laser desorption/ionization mass spectrometry showed its usefulness for metabolic fingerprinting and

disease diagnosis .

Figure 1. Schematic representation of multifunctional nanostructures: nanoparticle (NP), nanowire (NW), and

hybrid with various applications in biomedical science. These nanostructures can be surface modified with drugs

(incorporated or conjugated to the surface), a PEGylated lipid bilayer (to improve solubility and decrease

immunogenicity), targeting groups (to improve nanostructures’ circulation, effectiveness, and selectivity), and

imaging agents (e.g., fluorescent dyes used as reporter molecules and employed as tracking or contrast agents).

2. Nanomaterials for Retinal Regeneration

In the present section, we will discuss the importance of nanoparticles, nanowires, and hybrid nanostructures in

retinal regeneration, summarized in Table 1.

Table 1. Details of various nanostructures and their morphologies for targeting specific tissues or cells for retinal

regeneration.
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Nanostructure Nanomaterial Size Range (nm) Target Tissue/Cells Ref.

Nanoparticles Gold (Au)
(diameter)

3–5
Choroidal and retinal

endothelial cells

10–12 Retina of rabbit
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Nanostructure Nanomaterial Size Range (nm) Target Tissue/Cells Ref.

10–20
Photoreceptor

precursor
transplantation

80 Retinal cells

20–80
Nucleus and

mitochondria of retinal
cells

5–20 Blood–retinal barrier

Gold (Au) nanodisk

Thickness:
20

Diameter:
160

Retina

Silver (Ag)
(diameter)

20–80
Bovine retinal

endothelial cells

40–50
Porcine retinal

endothelial cells

Superparamagnetic iron oxide
nanoparticles

Diameter:
5–20

Retina

Magnetite 10 Retina and cells

NWs

Poly (ε-caprolactone) (PCL)
membranes

Length:
2500

Implantation into
subretinal space

Gallium phosphide (GaP)
Length:

500–4000
Retinal cells

n-type silicon
Length:

4400
Retinal cells

Gold (Au) nanorods
Thickness:

10–35
Retinal cells and
photoreceptors

Hybrid
nanostructure

Gold NPs coated over
titania (TiO ) NWs

Au NP diameter:
5–15

TiO  NW length:
2000

Artificial
photoreceptors
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Nanostructure Nanomaterial Size Range (nm) Target Tissue/Cells Ref.

Gallium phosphide (GaP) rod and
cone

Length:
20–2500

Ganglion cells, and
bipolar cells

Gold NPs coated over
silicon NWs

Au NP diameter:
5–10

NW length:
500–2500

Artificial
photoreceptors

Thin film functionalized with the NPs
Diameter:

5–50
Photoreceptors

p–n junction silicon NWs
NW length:

10–120
Membranes of live

bipolar cells

Au-coated carbon nanotube (Au-
CNT)

Au NP diameter:
5–20

CNT length:
500–2500

Subretinal space of
mice

Iridium oxide (IrOx) combined with
reduced graphene oxide

IrOx diameter:
2–25

CNT length:
2–2500

Subretinal implant into
live mice

Iridium oxide (IrOx) coated with CNT

IrOx diameter:
5–25

CNT length:
500–2500

Retinal cells/tissues

Core–shell-structured β-
NaYF4:20%Yb, 2%Er@β-NaYF4

nanoparticles

Diameter:
30–40

Subretinal space of
mice

Nanoscaffolds

Natural polymer:
gelatin, fibrin, chitosan, laminin, and

hyaluronic acid

Diameter/porosity:
100–200

Extracellular matrix
and cell attachment

Synthetic polymer:
poly (lactic-co-glycolic acid) (PLGA),
poly (ε-caprolactone) (PCL), poly (L-

lactic acid) (PLA), polyimide, and
poly (l-lactide-co-ε-caprolactone)

Diameter/porosity:
50–500

RPE, biological
activity, extracellular

matrix, and cell
attachment

Biohybrid:
nanofibers of Bruch’s membrane

Diameter/porosity:
100–200

RPE and biological
activity
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2.1. Nanoparticles

Nanoparticle-based gene and drug delivery to retinal cells has been harnessed to treat various eye diseases 

. The various transport mechanisms that nanoparticles employ to cross the blood–retinal

barrier are shown in Figure 2. Nanoparticles absorb or scatter light at specific frequencies/wavelengths as a

function of their physical and chemical characteristics. These properties of nanoparticles are well suited for

bioimaging and to treat cancer by using near-infrared-triggered photothermic therapy (PTT) . Due to the low

absorption coefficients of hemoglobin and water, the penetration of near-infrared (650–900 nm) rays in tissues is

very high, allowing the use of near-infrared rays for nanoparticle stimulation without damaging the tissue . Gold-

nanoparticle-based intravitreal injection is used for retinal imaging and for the inhibition of retinal

neovascularization to treat macular degeneration .

Figure 2. Transport mechanisms for delivering nanoparticles (NPs) into the blood–retinal barrier (BRB). The BRB

is exceedingly selective and has unambiguous transport mechanisms allowing a close control of molecules/cells

that enter the retina. Loosening of tight junctions (TJs) either due to the presence of a surfactant in NPs or by BRB

impairment due to pathological conditions allows the movement of NPs through the BRB. (A) NPs’ admittance into
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the retina is through receptor-mediated transcytosis. (B) The NPs interact with respective receptors on the

endothelial cell surface, which leads to plasma membrane invaginations, vesicle formation, and, therefore, the

release of the NPs at the other side of the membrane. (C) NPs coated with chitosan or other polysaccharides can

cross the BRB by adsorptive transcytosis.

2.2. Nanowires

Engineered nanostructural materials are essential for the development of advanced retinal applications. Among

them, nanowires have been reported for retinal applications in recent years . It has also been demonstrated that

the structure and morphology of nanowires are similar to those of photoreceptors, and the photoabsorption and

charge separation properties of nanowires are comparable to those of photodetectors or solar cells . The gold-

nanoparticle-decorated titania (Au-TiO ) nanowire acts as an artificial photoreceptor that restores the light

responses in a photoreceptor-degenerated retina. The use of nanowires with poly (ε-caprolactone) (PCL) scaffolds

for the delivery of retinal progenitor cells resulted in increased differentiation and migration of these cells into both

degenerated and normal retinas . Nanowires made of gallium phosphide have been shown to support the

long-term survival of photoreceptors (rods and cones), ganglion cells, and bipolar cells .

Nanowires not only sense the incoming light but also transfer electrical signals within rod and cone cells . To

create nanowires that can transfer electrical signals, researchers have used n-type and p-type silicon materials.

These silicon materials sense light and transform it into electrical signals . Furthermore, the one-dimensional

morphology of silicon nanowires is better suited to sense light and convey the signals to the various retinal layers

to correct the visual impairment . The incorporation of n-type and p-type silicon in nanowires has made it possible

for the nanowires to convert light signals to electrical signals and then transfer them into the membranes of live

bipolar cells for vision recovery .

2.3. Hybrid Nanostructures

A vast range of nanomaterials and nanostructures have been explored as neural interfaces in retinal physiology;

still, no single material has been successful in mimicking the biological, mechanical, and electrical properties of the

retina. In recent years, many hybrid approaches have been designed to explore the merits of many materials while

at the same time suppressing their demerits. Recently, Tang et al. demonstrated that artificial photoreceptors made

of gold-nanoparticle-decorated titania (Au–TiO ) nanowire arrays were able to absorb light, generate photovoltage,

and process visual information in a photoreceptor-degenerated retina . Not only is nanowire arrays’ rough

morphology useful for their association with cultured neurons, but they are also biocompatible or (photo)chemically

stable for over 2 months when used as a subretinal implant in mice . The use of a gold coating on carbon

nanotubes (Au-CNTs) further enhanced their surface area and electrical and mechanical adhesion . Iridium

oxide–carbon nanotube hybrids (IrOx-CNT) were reported to have a high effective surface area and much higher

charge storage capacities compared to pure iridium oxide . Furthermore, the hybrid coatings formed by

combining iridium oxide with reduced graphene oxide or graphene oxide exhibited 10% higher charge storage
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capacities than those of pure iridium oxide and iridium oxide–carbon nanotube hybrids, indicating superior

electrochemical stability .

2.4. Nanoscaffolds

Nanoscaffolds are self-assembled or electrospun nanofibers made up of synthetic or natural polymers.

Nanoscaffolds provide a microenvironment for cellular signaling that influences the proliferation, migration, and

differentiation of various cells .

These scaffolds are made up of natural nanofibers/polymers. Collagen I is a major component of retinal pigment

epithelial cells, and therefore, ultrathin collagen I membranes were used to design natural nanoscaffolds. These

membranes were stable for 10 weeks and degraded within 24 weeks. Other natural polymers used for retinal

regeneration studies include gelatin , fibrin , chitosan , laminin , and hyaluronic acid . The chemistry

of natural nanoscaffolds makes them more suitable for cell attachment and biological activity .

Synthetic nanoscaffolds are easier to design, and their physical properties can more easily be controlled to mimic

the extracellular matrix compared to natural polymers . Poly (lactic-co-glycolic acid) (PLGA) , poly (ε-

caprolactone) (PCL) , poly (L-lactic acid) (PLA) , polyimide , and poly (l-lactide-co-ε-caprolactone) 

are commonly used synthetic polymers.

Biohybrid nanoscaffolds are made by combining both natural and synthetic nanofibers to make composite

scaffolds. Biohybrid nanoscaffolds have the appearance and protein composition of a natural nanoscaffold and the

design of synthetic nanoscaffolds. Studies have shown that biohybrid nanoscaffolds are well tolerated without any

adverse inflammatory reaction in the retina , but there is a need to characterize the various components of

biohybrid nanoscaffolds for their reproducibility.

3. Studies on the Application of Nano-Biomaterials for
Retinal Regeneration

Retinal transplantation is considered a limiting factor for the treatment of blinding diseases due to the complex

neural network . Therefore, tissue regeneration using scaffolds with acceptable biocompatibility is a recent, more

promising approach to repair damaged tissues or organs. Scaffolds likely simulate the extracellular matrix (ECM)

and thus have the capability to support cell migration, adhesion, and morphology in the regeneration of the retina

. Nanomaterials with unique properties and a hierarchical architecture have been developed for

multidisciplinary applications and have the capability to significantly advance the field of tissue/organ regeneration.

As a result, various investigators have developed nanomaterials with better biocompatibility, electroconductivity,

and cell adhesion to enhance the efficiency of tissue regeneration. . Various in vitro, in vivo, and

therapeutic studies have highlighted the importance of nanostructures in retinal regeneration, and a summary is

presented in Table 2.
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