

Rare Earths Recovery Using ILs and ILs

Subjects: **Chemistry, Applied**

Contributor: Francisco Jose Alguacil , Jose Ignacio Robla

Ionic liquids (ILs), or room-temperature ionic liquids (RTILs), are a class of chemicals consisting of ions that maintain a liquid state below 100 °C. ILs serve as the basis of deep eutectic solvents (DESs), which formed a new class of chemicals characterized as being formed by mixtures of components of a eutectic, with the resulting product presenting a melting point lower than the values presented by the pure components. The presence of these rare earths in different wastes varies for each element, and it seems to be difficult to establish a fixed concentration for each element.

rare-earth elements

ionic liquids

deep eutectic solvents

solvometallurgy

1. Introduction

Besides their use as raw materials, metals can also be recovered from different secondary resources. Among these, the processing of industrial wastes, which contain several times the quantities of valuable metals, is of special interest. These industrial wastes include (i) metallurgical wastes (phosphogypsum and red mud), (ii) fly ash, (iii) mining wastes (mine tailings and acid mine drainage byproducts), and (iv) electronic wastes (magnets, NiMH batteries, lithium-ion batteries, and phosphors) [1]. Among these metals are rare-earth elements (REEs), a category that includes 15 lanthanides (LNs), yttrium, and scandium [2][3]. Moreover, rare-earth elements are commonly divided into two families: (i) light rare earths, which comprise lanthanum, cerium, praseodymium, neodymium, promethium, and samarium, and (ii) heavy rare earths, with europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium being components of this subcategory.

The presence of these rare earths in different wastes varies for each element, and it seems to be difficult to establish a fixed concentration for each element [1][4]. As a first approach, **Table 1** shows REEs concentrations in a series of industrial wastes; this variety of composition means that these wastes can be treated via different processing routes, and these routes result in different processing costs, yields, and economic benefits. As shown in **Table 1**, a common feature of these various wastes is that light rare earths are always present in greater concentrations than those of heavy rare earths.

Table 1. Presence of REEs in various wastes.

Waste	La	Nd	Ce	Pr	Tb	Lu	Ho	Yb	Eu	Gd
phosphogypsum	1450	899			74	0.6				

Waste	La	Nd	Ce	Pr	Tb	Lu	Ho	Yb	Eu	Gd
red mud		99	368			2.4	4.3			
fly ash	114	99				1		14		
mine tailing	903	906				4				
^a AMD	0.01–0.09			0.006–0.03	16	0.0002–0.002			0.002–0.03	
NdFeBmagnets		260								
NiMH batteries	237	36	67							
phosphors	36		49		2.7				2.5	

Due to their specific atomic structures, this group of elements presents unique optical, thermal, electrical, and magnetic properties; thus, they are widely used in various fields, including traditional industries, such as glass, agriculture, ceramics, chemicals, etc., as well as high-tech industries such as the energy sector, the automotive sector, healthcare, the nuclear industry, communications, and the military [\[5\]\[6\]\[7\]\[8\]\[9\]](#).

Against the above, these increasing exploitations and applications have increased the presence of REEs in the environment (in the atmosphere, water, and soil), boosting the potential risk of contamination for humans and other organisms [\[10\]](#).

In view of the relevance of the recovery of these REES for resource conservation, and as a legitimate alternative to the traditional recovery (pyro- or hydrometallurgical) processes, there is an increasing interest in the use of smart recovery processes, with the same efficiency and more environmentally friendly characteristics, and here the concept of solvometallurgy arises.

If the difference between pyrometallurgy and hydrometallurgy lies in the use of high temperatures (pyrometallurgy) versus the use of moderate temperatures, pressure, and aqueous systems (in the case of hydrometallurgical processing), the difference between hydrometallurgy and solvometallurgy is that the latter uses non-aqueous solvents. Most of the unit processes (leaching, solvent extraction, ion exchange, precipitation, and electrolysis) in solvometallurgy are similar to those used in hydrometallurgy, with the main difference, as said above, being that water is replaced by a non-aqueous solvent [\[11\]\[12\]](#).

2. Ionic Liquids

Ionic liquids (ILs), or room-temperature ionic liquids (RTILs), are a class of chemicals consisting of ions that maintain a liquid state below 100 °C. They are frequently composed of an organic cation (i.e., tetraethyl ammonium, dialkylimidazolium, 1-ethyl-3-methylimidazolium, and phosphonium-based) and an organic or inorganic anion (i.e., chloride, nitrate, bisulfate, chlorate, and thiocyanate). Moreover, ILs have relatively high viscosity and density [\[13\]](#).

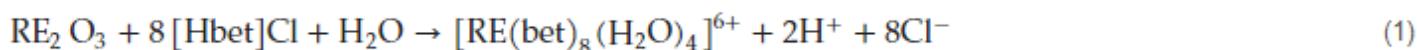
The bulky characteristics of the organic moiety of ILs are responsible for these chemicals' amply liquidous range and thus low volatility. The properties presented by ILs include thermal and radioactive stability, non-volatility, non-flammability, adjustable miscibility in organic diluents, and polarity. Also, these properties can be modified to match a given necessity by changing to the appropriate cation and/or anion to form the more specialized Task-Specific Ionic Liquids (TSILs) family of chemicals [14].

The different applications of ILs and TSILs have enhanced the development of different extraction processes: simplifying analytical methodologies, the removal of environmental contaminants, breaking of azeotropes [15], and purification of fuels [16]. Technologies including liquid–liquid extraction (LLE), solid-phase extraction (SPE), pressurized liquid extraction (PLE), and liquid-phase microextraction (LPME) use these chemicals in a very efficient manner. Properly used, these ILs can avoid the use of chelating agents in the selective extraction of ions [17]. Also, they can bring about mass transfer in novel miniaturized homogeneous LPME models [18]. Other uses of this family of compounds include UV-V spectrophotometric determination of mercury ions from water samples [19], the use of silica as support of ILs phases, to act as SPE adsorbents used in the removal of organic acids, amines, and aldehydes from atmospheric aerosol samples [20], and to remove carbon dioxide from gaseous streams [21].

IL chemicals have been labeled as green compounds due to their properties, though there are also some claims against this green label because there are several concerns about air, water, and terrestrial pollution. Some of these harmful properties, on living organisms, are connected with undesirable effects on cellular walls [22], though this harmfulness varies from one organism to another.

Several uses of ILs in the recovery of metals have been recently published [23][24][25][26][27][28].

ILs and REEs


Several reviews [29][30] deal with the application of ILs in the recovery of these strategic elements. These reviews focused on the use of ionic liquids in the recovery of secondary resources such as e-wastes and nickel-metal hydride batteries (NiMHBs). In the case of e-wastes [29], the review included the use of IL extraction, selectivity, and reusability, including several types of TSILs, and the use of diluents in the organic phase. The content of REEs (about 10% wt) in nickel-metal hydride spent batteries are usually dumped, though several approaches to recover La, Ce, Nd, and Pr, from these discarded resources are also into consideration [30].

Since REEs and some of their derivatives have several uses in smart technologies, praseodymium oxide nanoparticles (Pr_6O_{11} nps) are formed by the use as a templating agent of an IL (BMIM-PF₆) and an alcohol [31]. The IL inhibited particle growth, whereas ethylene glycol is used as a diluent of the organic phase. The as-synthesized nanoparticles presented anti-cancerogenous properties and antibacterial activity against Gram-negative bacteria *K. pneumoniae* and Gram-positive bacteria *S. aureus*.

The separation of some REEs with 1,2-hydroxypyridinone grafted ionic liquid (HOPO-IL) has been investigated [32]. Moreover, the performance of this extractant for lanthanide separation in the presence of various ionic liquids (ILs) and organic diluents has also been investigated, revealing better extraction performance in the ILs instead of using

1-octanol. Lanthanide extraction with HOPO-IL was pH-dependent, the metals being extracted by a cation-exchange-based reaction, in which lanthanide elements, in the form of cations, are exchanged with $[C_n\text{mim}^+]$ from the ionic liquid. With respect to the ILs' composition, the addition of $[\text{NTf}_2^-]$ had a minor influence on metal loading onto the organic phase, whereas the presence of $[C_n\text{mim}]^+$ had an increasing suppressing effect when n increased from 4 to 10 on lanthanide extraction, which supports the idea that the cation exchange mechanism is dominant in this extraction system. The dependence of the extraction of these REEs on the aqueous pH value suggested that the stripping step can be performed by solutions of acidic pH values.

A method for recycling permanent magnet waste via betaine hydrochloride ($[\text{Hbet}]\text{Cl}$) solution extraction was presented [33]. The next optimum leaching conditions were obtained as a leaching temperature of 200 °C, reaction time of 8 h, $[\text{Hbet}]\text{Cl}$ concentration of 0.2 mol/L, and solid–liquid ratio of 1:150 (g/mL). The abovementioned experimental values allowed reaching leaching rates of 99.8% Pr, 97.1% Nd, 95.5% Gd, 56.2% Ce, and less than 0.3% in the case of iron, and the residue of the leach operation contained iron oxide. When mineral acids HCl, H_2SO_4 , or HNO_3 are used to dissolve the magnet, the present procedure allows for an improvement in the leaching percentage and the selective separation of these elements, the dissolution sequence being in accordance with the properties of these metals. REEs are leached via the next reaction:

The separation of the various REEs from the leaching solution was not described in the published manuscript.

A method for recycling a real scrap NdFeNi magnet from computer hard disks in order to recover Nd(III) as a marketable salt and other valuable by-products was described [34]. Solvent extraction of Nd(III) and Ni(II) used the synthesized bi-functional ionic liquid (Bif-IL) [AL336][Cy572] in kerosene, based on Aliquat 336 (quaternary ammonium salt) and Cyanex 572 (phosphonic acid). When compared to Cyanex 572 alone, Bif-IL improved not only the extraction percentage of these metals but also the separation factors between Nd(III) and Ni(II), with the highest Nd/Ni separation factor of 26.3 obtained with 0.2 M HCl medium. It was determined that the extracted species were $\text{NdCl}_3(\text{R}_4\text{NCy})_3$ and $\text{NiCl}_2(\text{R}_4\text{NCy})_2$. The Nd-loaded organic phase was stripped with 0.5 M HCl solution, and from the stripped solution, Nd(III) was precipitated with oxalic acid; furthermore, the resulting solid was calcined to yield Nd_2O_3 .

As part of the downstream technology development efforts in the treatment of acid mine drainage (AMD), several ionic liquids were synthesized and compared in the extraction of REEs, including Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, and U [35]. In the investigation, the extractants and their ionic liquids shown in **Table 2** were used.

Table 2. Extractants and ionic liquids used in the extraction of REEs from AMD.

Extractant	Acronym
di-2-ethylhexyl phosphoric acid	D2EHPA
tri(hexyltetradecyl phosphonium chloride	C101
2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester	EHEHPA
Mixture of phosphonic acid and phosphinic acids	C572
Derived Ionic liquids	
trihexyltetradecylphosphonium and di-2-ethylhexyl phosphate	[C101] ⁺ [D2EHP] ⁻
trihexyltetradecylphosphonium and 2-ethylhexyl phosphate mono-2-ethylhexyl ester	[C101] ⁺ [HEHP] ⁻
trihexyltetradecylphosphonium and mixture of phosphate and phosphinate	[C101] ⁺ [C572] ⁻

From [35].

References
 Kerosene was used to dissolve the above-shown reactants in order to reduce their viscosity, and extractions were carried out with solutions of pH 4.4. The results indicated that the ionic liquids [C101]⁺[D2EHP]⁻ and [C101]⁺[HEHP]⁻ were more effective than the single REE extractants [101–105]. It is analogous with the behavior of the single D2EHPA. The presence of zinc cations in the solution decreased the extraction of REEs [101, 105, 106]. There was a necessity to minimize the presence of these two elements in the circuit. No data were given about experimental variables influencing REE extraction or about the stripping stage. In this 2. Swain, B. Challenges and opportunities for sustainable valorization of rare earth metals from anthropogenic waste. *Rev. Environ. Sci. Biotechnol.* 2023, 22, 133–173.

3. Panjape, P. V.; Marikhumar, D. Recent advances in the approaches to recover rare earths and previous metals from E-waste and a review. *Oil. & Chem. Eng.* 2023, 101, 1040–1054.

4. Gaustad, G.; Williams, E.; Leader, A. Rare earth metals from secondary sources: Review of component solutions and their deposition potential shifted positively when the water concentration was increased, indicating deposition acceleration. From binary solutions, Sm–Co co-deposition was also observed. In these binary solutions, Sm was co-deposited at much less negative potentials than the element with a single solution. An increase in the water concentration resulted in deposition of particles for biomedical applications. *Adv. Opt. Mater.* 2023, 11, 2201316.

5. Wei, H.; Zheng, W.; Zhang, X.; Suo, H.; Chen, B.; Wang, Y.; Wang, Y.; Fei, T. Tuning near infrared to ultraviolet upconversion in lanthanide-doped nanoparticles for biomedical applications. *Adv. Opt. Mater.* 2023, 11, 2201316.

6. Zenia, T.; Kaseem, M. Lanthanides: The key to durable and sustainable corrosion protection. *ACS Sust. Chem. Eng.* 2023, 11, 6776–6800.

Neodymium was extracted from aqueous solutions, by trioctylphosphine oxide (TOPO) dissolved in an ionic liquid [1-Butyl-3-methylimidazolium][Bis(trimethylsilyl)ethoxy] (BTSI-Et₂O) at a small volume ratio. A 10% (w/v) solution of TOPO was found at high Nd³⁺ concentrations of 0.005 and 0.01 M in a 0.001 M nitric acid medium. The continuous flow extractions were carried out in channels with 0.5 and 1 mm diameter, and at equal phase mixture velocities (0.01 and 0.05 m/s), the flow pattern studies highlighted a plug flow regime. *hancocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. Results Chem.* 2023, 5, 100877.

9. Bahjat, F.; Kavian, N.O.; Supriyadi, S.; Nurjaman³; For Prasetyo, E.; Susanti, D. Properties of No stripping earth elements in magnetic materials and its processing. *Prog. Phys. Metals* 2023, 24, 157–172.

The solvent extraction of Nd (III), Sm (III), and Eu (III) by using the bifunctional ionic liquid tri-n-octyl amine-di-2-10. Ferreira, M.S.; Fontes, M.P.F.; Lima, M.T.W.D.C.; Cordeiro, S.G.; Wyatt, N.L.P.; Lima, H.N.; ethylhexyl phosphate ([TOA-D2]) as an extractant was investigated ³⁸. The extraction was performed in the presence of a complexing agent such as EDTA. The extraction of the three elements increased with the increase of Amazon soils. *Sci. Total Environ.* 2022, 806, 151191. the pH of the solution from 1 to 2 and tended to stabilize at pH values of 2–3 (Table 3).

11. Binnemans, K.; Jones, P.T. Solvometallurgy: An emerging branch of Extractive Metallurgy. *J. Sustain. Metall.* 2017, 5, 570–600.

Table 3. Percentages of extraction of REEs at various pH values.

1	REE	pH 1	pH 2	pH 3	leous
	Nd(III)	33	69	69	22, 290,
1	Sm(III)	31	69	60	1. 2021,
	Eu(III)	24	51	55	

14. Yue, C.; Fang, D.; Liu, L.; Yi, T.-F. Synthesis and ^{From} ³⁹ application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. *J. Molec. Liq.* 2011, 163, 99–121.

In the three above-shown cases, the extraction process was exothermic; thus, the extraction efficiency decreased 15. Elenitsa Boli, E.; Voutsas, E. Ionic liquids as entrainers for the separation of azeotropic mixtures. when the temperature was increased from 25 to 55 °C. The equilibrium data modeling also confirmed the formation of solvated species with one extractant moiety. Stripping of the three elements increased with the increase in the 16. Aghaei, A.; Sobati, M.A. Extraction of sulfur compounds from middle distillate fuels using ionic acid concentration (HCl or HNO₃) from 0.02 to 0.8 M. liquids and deep eutectic solvents: A critical review. *Fuels* 2022, 310, 122279.

17. Flieger, J.; Tatarczak-Michalewska, M.; Blicharska, E.; Madejska, A.; Flieger, W.; Adamczuk, A. Being that neodymium has similar physicochemical properties to lanthanum, cerium, and praseodymium, it was difficult to achieve the separation (and purification) of these elements; thus, various phosphate-based ionic liquids, including N,N-dimethyloctylamine bis(2-ethylhexyl)phosphate ([N_{1,8,H}]₂[DEHP]), N,N-dimethyldecylamine bis(2-ethylhexyl)phosphate ([N_{1,1,10,H}]₂[DEHP]), and N,N-dimethyldodecylamine bis(2-ethylhexyl)phosphate ([N_{1,1,12,H}]₂[DEHP]), were synthesized and investigated for selective separation of Nd(III) from aqueous solution ⁴⁰. Under the various experimental conditions, it was found that the extraction efficiency of Nd(III) using [N_{1,1,8,H}]₂[DEHP] was near 100% at a pH of 4. At this pH value, the separation factor (β) values of $\beta_{Nd/La}$, $\beta_{Nd/Ce}$, and $\beta_{Nd/Pr}$ using this 18. Herce-Sesa, B.; López-López, J.A.; Moreno, C. Advances in ionic liquids and deep eutectic solvents-based liquid-phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. *TrAC Trends Anal. Chem.* 2021, 143, 116398. 19. Zeng, C.; Li, M.; Xie, Q.; Yan, F.; Zhang, X. UV–VIS spectrophotometric determination of mercury based on room temperature ionic liquids enhanced hollow fiber liquid-phase microextraction. *Spectrosc. Lett.* 2015, 48, 653–659.

Two ionic liquids [A336][BTA] (BTA = dibutyl thioglycolamate) and [A336][OTA] (OTA = dioctyl thioglycolamate), 20. Vidal, J.; Parshintsev, I.; Hartonen, K.; Canals, A.; Riekkola, M.L. Ionic liquid-functionalized silicon, both presenting low viscosities, were formed to extract Nd(III), in a selective form, using waste Nd-Fe-B magnets ⁴¹. Better results were obtained with [A336][OTA], though in both cases the extraction increased with the increase in the pH value (1–3) and then (3–6) remained constant. Also, the increase in the ionic strength (NaCl addition) from 0 to 0.3 M increased the extraction efficiency. Using both ionic liquids, the extracted species responded to the 21. Elmoabarak, W.F.; Almomani, F.; Tawaleeb, M.; Al-Othman, A.; Matis, R.; Rasool, K. Current status IL₂–NaCl stoichiometry. Stripping was performed via precipitation with potassium oxalate. This work used kinetic of CO₂ capture with ionic liquids: Development and progress. *Fuels* 2023, 344, 128102.

35. Larochette, F.; Noblet, A.; Strickland, K.; Ahn, A.; Ziemkiewicz, R.; Constant, J.; Hoffman, D. Coming back from the cold: Single Recovery of rare earth elements from acid minerals using organic phosphorus extractants and ionic liquids. *Minerals* 2022, 12, 1337.

Table 4. Species formed in the extraction of Nd(III) from various aqueous media.
36. Molodkina, E.B.; Ehrenburg, M.R.; Rudnev, A.V. Electrochemical codeposition of Sm and Co in a

Aqueous Medium	Species
Acetate	$[N_{4,4,4,Bm}]_3Nd[SA]_{1.5}(OAc)_3$
Nitrate	$[N_{4,4,4,Bm}]_3Nd[SA]_{1.5}(NO_3)_3$
Chloride	$[N_{4,4,4,Bm}]_4Nd[SA]_2Cl_3$

37. from EDTA solution using in kerosene: Thermophysical properties, Process parameters and Extraction mechanism. *Chem. Pap.* 2022, 76, 7451–7464. From 23

38. Xing, L.; Ma, X.; Hu, K.; Yuan, H.; Wei, J.; Gao, H.; Nie, Y. Selective separation of Nd from Reference 44 mentioned one of the problems in the use of ionic liquids in the recovery of rare earth elements (and La/Ce/Pr using phosphate-based ionic liquids. Solvent extraction studies and density functional theory. *Miner. Eng.* 2023, 191, 107967. since, during the extraction process, an ionic liquid would enter the solution in the form of ions, causing the loss of 40. Xue, W.; Liu, R.; Liu, X.; Wang, Y.; Lv, P.; Yang, X. Selective extraction of Nd(III) by novel carboxylic acid-based ionic liquids without diluent from waste NdFeB magnets. *J. Molec. Liq.* 2022, 364, 119919. environmentally friendly. At the time of writing and/or publication, the use of these ionic liquids as extractants for REEs was still only in the laboratory research stage.

41. Pati, P.; Mishra, S.; Prusty, S. Evaluation of extraction behaviour of technologically important metals from nitrate feed using Tri-n-hexylamine di-2-ethyl hexyl phosphate as extractant. *Mater. Today Proc.* Practically, the recovery of all metals using ILs has been investigated over time, with recent efforts described in the 2023.

literature, including the recovery of platinum group metals from spent automotive converters using Cyphos IL101

42. Panda, P.; Mishra, S. Effect of process variables on the extraction of Y(III) from nitrate medium utilizing ionic liquid + Mater. Today Proc. 2023

43. Deng, Y.; Zhang, Y.; Ding, Y. Recovery of rare earths in different media with novel dicarboxylate-based ionic liquid and application to recycle SmCo magnets. *Hydrometallurgy* 2022, 210, 105844.

also proposed for the recovery of sulfide from fuels [51]. The abovementioned examples indicate that there is still

44. Zhang, W.; Tong, X.; Du, Y.; Cao, Y.; Feng, D.; Xie, X. Research progress on extraction and separation of rare earth by solvent method. *Xiyou Jinshu Chin. J. Rare Met.* 2022, 46, 1645–1656.

45. Wierka, Z.; Pielewska-Pielut, M.; Rogal-Rosocka, M. Recovery of platinum group metals from spent automotive converters by leaching with organic and inorganic acids and extraction with quaternary phosphonium salts. *Sep. Purif. Technol.* 2022, 280, 119933. The quaternary phosphonium salts with different properties, excluded the use of ILs as neoteric solvents with green characteristics.

46. Belhadj, N.; Benabdallah, T.; Coll, M.T.; Fortuny, A.; Hadj Youcef, M.; Sastre, A.M. Counter-current separation of cobalt(II)–nickel(II) from aqueous sulphate media with a mixture of Primene JMT-ILs serve as the basis of deep eutectic solvents (DESs), which formed a new class of chemicals characterized as Versatic 10 diluted in kerosene. *Sep. Sci. Technol.* 2020, 55, 513–522.

47. Alguacil, F.J.; Lopez, F. A note on the 52/58 ionic liquid/toluene. *Processes* 2021, 9, 608.

48. Arruda, G.; Gómez, C.; Gómez, J.; Gómez, S.; Sánchez, G.; Pérez, R. Recovery of rare earths from low-melting-point elements (REEs) using ionic solvents. *Process Saf. Environ. Prog.* 2021, 40, 1202. flash-point values, and chemical and thermal stability; moreover, their properties can be changed to fulfill the requirements of these extractants to be 49. Lee, J.-C.; Kurniawah, K.; Kim, S.; Nguyen, V.T.; Pandey, B.D. Ionic liquids-assisted solvent used in specific cases. The difference in the properties of DESs, with respect to those of ILs, is somewhat extraction of precious metals from chloride solutions. *Sep. Purif. Rev.* 2023, 52, 242–261. 50. Rout, A. Separation of plutonium from other actinides and fission products in ionic liquid medium. Clearly different between these two types of chemicals. *Sep. Purif. Rev.* 2023, 52, 98–122.

51. Zhang, H.; Chen, L.; Chen, Y.; Wang, Z. Removal of sulfide from fuels by ionic liquids: Prospects quaternary ammonium salt, and either a metal salt or an organic compound that acted as a hydrogen bond donor for the future. *Braz. J. Chem. Eng.* 2023, 223.

(HBD). Owing to the large combination of HBAs and HBDs, they can be tuned for various uses and are thus 52. Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheedand, R.; Tambyrajah, V. Preparation considered designer solvents. of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with DES functional side chains. *Chem. Commun.* 2001, 2001, 2010–2011a cation (e.g., ammonium, phosphonium, sulfonium) with X^- being a Lewis base serving as a counter ion (often halide anions) and Y being a Lewis or

53. Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheedand, R.K.; Tambyrajah, V. Novel Solvent Brønsted acid with z molecules interacting with the anion. With the next general formulae, one can account for five properties of choline chloride/urea mixtures. *Chem. Commun.* 2003, 3, 70–71. types of DESs:

54. Yuan, Z.; Liu, H.; Yong, W.F.; She, Q.; Esteban, J. Status and advances of deep eutectic solvents Type I: metal separation under recovery. *Green Chem.* 2022, 24, 1895–1929 metal halide/imidazolium salt systems.

55. Karzan, A.O.; Sadeghi, R. New chloroacetic acid-based deep eutectic solvents for solubilizing metal oxides. *J. Mol. Liq.* 2022, 347, 118393.

Type II: Cation $^+X^-z\text{MCl}_x^y\text{H}_2\text{O}$, where M = Co, Cu, Cr, Ni, or Fe. This type of DES differentiates from I in that it

56. Singh, M.; Baruah, K.; Das, G.; Chaudhury, M. W. B. Their relatively review on synthesis, properties and melting point applications of deep eutectic solvents. *J. Indian Chem. Soc.* 2021, 98, 100210.

57. Richter, J.; Ruck, M. Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic Type III: Cation $^+X^-z\text{RL}$, where R is an organic radical and L = CONH_2 , COOH, or OH. This type is the most widely solvents. *Molecules* 2020, 25, 78.

known and applied. Very often, these DESs are used as precursors of choline chloride (ChCl) and HBDs such as

58. Thompson, D.; Lai, P.; Patel, A.; Mhaisalkar, G.; Jack, S.; An, A.; Abis, T.; Ade, H.; Hattori, M. Separation of nickel

from cobalt and manganese in lithium ion batteries using deep eutectic solvents. *Green Chem.*

Type IV: $\text{MCl}_x^y\text{R}_z^T \rightarrow \text{MCl}_{x+1}^y\text{R}_z^T + \text{MCl}_{x+1}^-$, where M = Al or Zn and L = CONH_2 or OH. In their composition, inorganic cations, not forming alone with low-melting-point eutectics, are present. ZnCl_2 and HBDs, such as urea, 59. Tian, G.; Liu, H. Review on the mineral processing in ionic liquids and deep eutectic solvents. acetamide, or different diols, are normally components of this type of DES.

Miner. Proc. Extract. Metal. Rev. 2022.

60. Chen, T.W.; Priya, T.S.; Chen, S.M.; Kokilashvili, T.; Ahmed, F.; Alshahrani, T. Synthesis of praseodymium vanadate in deep eutectic solvent medium for electrochemical detection of taurulfadione. *Proc. Safety Environ. Protect.* 2023, 174, 368–373.

61. Favero, U.G.; Schaeffer, N.; Passos, H.; Cruz, K.A.M.L.; Ananias, D.; Dourdain, S.; Hespanhol,

M.C. Solvent extraction in non-ideal eutectic solvents—Application towards lanthanide separation. Recently, for these types of DESs, different new terms have been added to the nomenclature of these non-aqueous solvents. Natural Deep Eutectic Solvents (NADESs) is among them, which refers to type III compounds combining ChCl, such as HBA, with naturally occurring carboxylic acids, sugars, and aminoacids; also, water was added on some occasions as a third component. Apart from these ChCl-based NADESs, others can be prepared

62. Karan, R.; Sreenivas, T.; Kumar, M.; Singh, D. K. Recovery of rare earth elements from coal fly-ash using deep eutectic solvents as leachants and precipitating as oxalate or fluoride. *Hydrometallurgy* 2022, 214, 105052. ChCl. NADESs were developed to explore the enhancement of the solubility of some intracellular compounds (flavonoid, rutin, starch, albumin, etc.) that presented limited solubility in water. Additionally, therapeutic Deep Eutectic Solvents (THEDESs) are another type of chemical, in which active pharmaceutical ingredients are present and show potential in products where solubility problems should be avoided. Mixtures of menthol and ibuprofen have been proposed to enhance topical delivery systems.

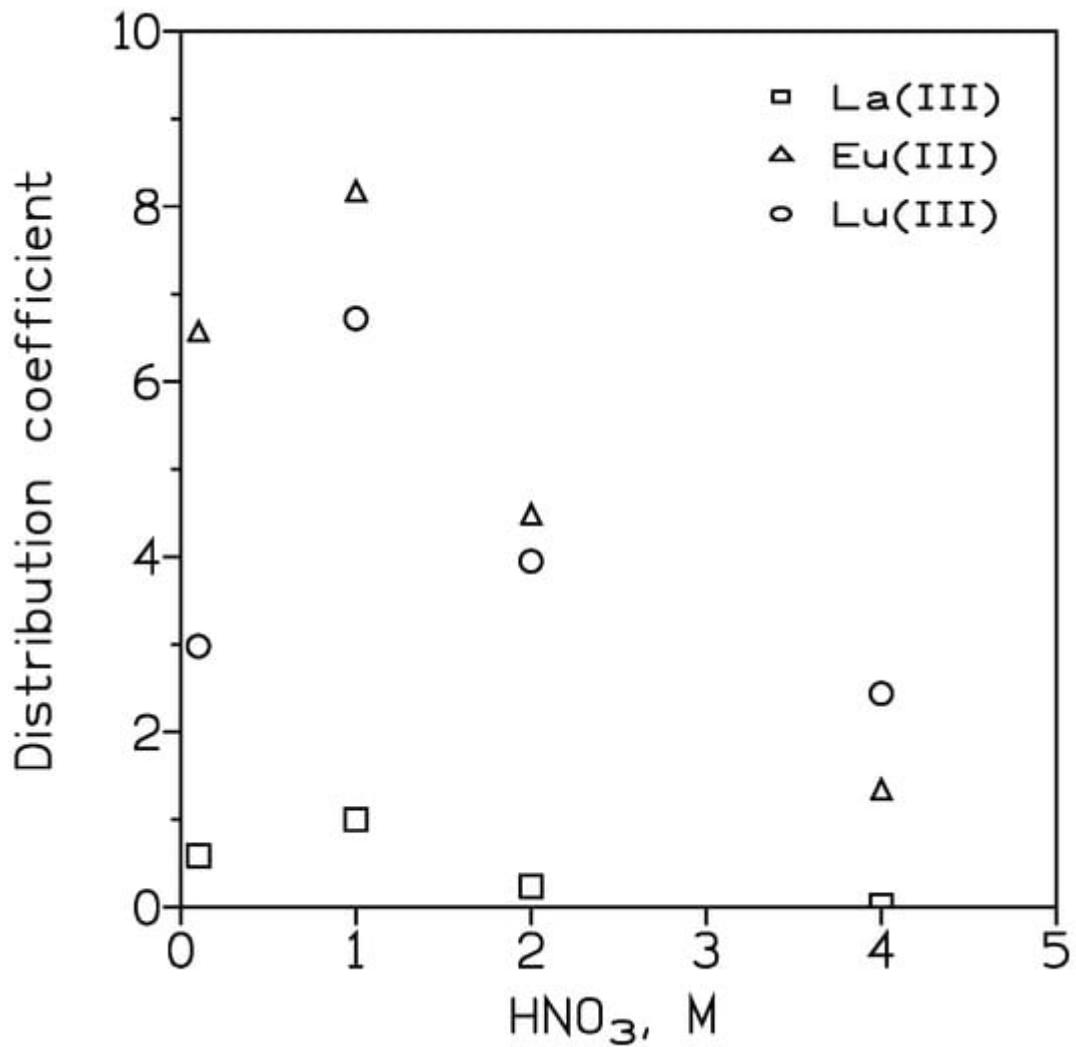
63. Li, X.; Li, W.; Gao, Y.; Tian, G. Effect of mechanical activation on the leaching process of rare earth metal yttrium in deep eutectic solvents. *Appl. Sci.* 2022, 12, 8253.

64. Ni, S.; Gao, Y.; Yu, G.; Zhang, S.; Zeng, Z.; Sun, X. Tailored ternary hydrophobic deep eutectic solvents for synergistic separation of yttrium from heavy rare earth elements. *Green Chem.* 2022, 24, 7148–7161.

65. Pires, C.M.G.; Ribeiro, A.B.; Mateus, E.P.; Ponte, H.A.; Ponte, M.J.J.S. Extraction of rare earth elements via electric field assisted mining applying deep eutectic solvents. *Sust. Chem. Phar.* 2022, 26, 100638.

Deep Eutectic Solvents and Rare Earth Elements

Reference [59] described the use of DESs (and also ILs) to improve the floatation characteristics of some minerals, such as rare earth minerals, quartz, and quartz hematite, as well as carbonate asphalt. The amount of DESs used in this field is smaller if compared with traditional floatation agents.


66. Phya, T.S.; Chen, T.W.; Chen, S.M.; Kokulnathan, T.; Lou, B.S.; Al-Onazi, W.A.; Al-Mohammed, A.M.; Elshikh, M.S.; Yu, J. Synthesis of perovskite-type potassium niobate using deep eutectic solvents: A promising electrode material for detection of bisphenol A. *Chemosphere* 2023, 318, 137948.

One of the various uses of DESs is to provide suitable media for the synthesis of REE-bearing compounds. A DES prepared by mixing ethylene chloride (C₂Cl₂) and urea (1:2) was used as a synthesis medium, via the solvothermal method, of praseodymium vanadate (PrVO₄) nanoparticles [60]. These nanoparticles were used as a solely capable electrocatalyst for the detection of furafuralone (FLO). Despite its mutagenic and carcinogenic properties, this FLO is an antibiotic that is commonly used in the growth of aquatic organisms and livestock.

67. Sanchez-Segado, S.; Stodd, S.; Chinakwe, V.; Love, E.; Smith, M.; Wall, F.; Abbott, A.P.; Jha, A. Influence of the alkali-promoted phase transformation [61] in monazite for selective recovery of rare oxides using deep eutectic solvents. *Miner. Eng.* 2022, 182, 107564.

68. Ushizaki, S.; Kanemaru, S.; Sugimoto, K.; Baba, Y. Selective extraction equilibria of Sc(III), Y(III), Fe(III) and Al(III) from acidic media with toluene mixture of deep eutectic solvent (DES) composed of TOPO and isostearic acid. *Anal. Sci.* 2023, 39, 473–481.

triethylphosphine oxide (TOPO) was investigated [61]. The maximum distribution of all lanthanides (from La(III) to Lu(III)) was observed for an aqueous acidity of 0.5–1 M nitric acid (Figure 1), and the extraction decreased with the increase in the organic acid concentration in the organic phase; thus, TOPO was the key extractant for efficient extraction. No stripping data were available in the published manuscript.

Figure 1. Distribution coefficients of some representative lanthanide elements at various nitric acid concentrations. $[\text{Ln}]_0 = 7.5 \text{ mmol/L}$. Organic phase: $\text{C}_{10}\text{OOH} + \text{TOPO}$ (50% each). O/A ratio: 0.5. T: 25 °C. Data are from [\[61\]](#).

Deep eutectic solvents were investigated in the recovery of rare earth elements from coal fly ash [\[62\]](#). Mixtures of choline chloride (ChCl) with lactic acid (LA) and ChCl with para-toluene sulphonic acid monohydrate (pTSA) were used in the investigation. The first results showed better leaching rates when the molar ratios of ChCl:LA and ChCl:pTSA were 1:2 and 1:1, respectively. Both systems showed REE recoveries in the 85–95% range, though the best results were generally obtained with the ChCl:pTSA mixture, indicating the higher acidity provided by pTSA, which contributed to the REEs' dissolution process. Both DES systems had about 5–8% higher dissolution than single LA, pTSA, and ChCl systems, with this enhancement in the dissolution being even higher, about 35%, when comparing the use of these DES systems with the use of sulphuric acid or another mineral acid (HCl, HNO₃). After dissolution, the leached liquor was diluted at 50% with demineralized water and REEs were recovered by direct chemical precipitation with oxalic acid.

The leaching behavior of rare earth (yttrium) carbonate before and after mechanical activation in choline chloride–urea–malonic acid deep eutectic solvents was investigated [\[63\]](#). Without mechanical activation, yttrium dissolution was about 49%, while the leaching efficiency of yttrium was increased to 85% when the activation time was 60 min,

this increase being attributable to the decrease in the particle size and the increased contact area of the reaction when mechanical activation was used. The dissolution process was controlled via chemical reaction and diffusion in the solid product layer. No data were provided regarding what to do with the Y-bearing DES phase.

A strategy for the separation of yttrium from heavy rare earth elements (HREEs) based on ternary hydrophobic deep eutectic solvent (HDES) extraction was proposed [64]. A total of 44 HDESs were prepared with four carboxylic acids serving as hydrogen bond donors (HBDs), bis(2-ethylhexyl) amine (BEA) serving as the hydrogen bond acceptor (HBA), and 1-decanol (DL) serving as the third component of the mixture. The prepared HDESs had the advantages of simple preparation, no purification requirement, low viscosity, low water solubility, and low toxicity. Among the various investigated compounds, the DL:oleic acid (OA):BEA-based HDES with OA as the HBD presented the best extraction ability, higher saturation loading capacity, and better phase separation stability. The separation factors of the DL:OA:BEA (9:1:5) mixture for HREEs (Dy-Lu) and Y in an industrial Y-enriched solution were Dy/Y \geq 3.05, Ho/Y \geq 3.37, Er/Y \geq 4.29, Tm/Y \geq 6.00, Yb/Y \geq 10.8, and Lu/Y \geq 11.2. The extraction of these elements was performed via ion association and partial cation exchange reactions, which took place simultaneously. The loaded HDES can be stripped from the organic phase with 0.2 M sodium oxalate or water.

In order to improve recovery strategies, electric-field-assisted mining has arisen as a technique to extract species from soils using green electrolytes to help in the extraction of metals. Thus, reference [65] evaluated the influence of various types of biodegradable electrolytes, including the use of deep eutectic solvents, in the electromining process. The soil, sampled from the northern region of Brazil, contained cerium(IV), lanthanum(III), and neodymium(III), and the DES-based solutions were prepared by mixing choline chloride and (i) acetic acid, (ii) citric acid, and (iii) oxalic acid in a 1:2 (ChCl:acid) molar ratio. Applying an electric field of 1 V/cm, as was somewhat expected, the use of the various electrolytes resulted in different solubilities. The maximum efficiency using only acetic acid resulted in nearly 70% of cerium(IV) recovery; citric acid removed 63% of lanthanum (III) and oxalic acid extracted 22% of the same rare earth. The results revealed that the use of the abovementioned DES+ acid mixtures did not improve the recovery of these REEs (**Table 5**); this is attributable to the possible degradation of choline chloride and the increase in the pH in the cathodic region. There was no mention of the recovery of these valuable REEs or what to do with the resulting solutions.

Table 5. Recovery of REEs using ChCl:acid mixtures in an electromining process.

Electrolyte	Ce(IV)	La(III)	Nd(III)
Acetic acid	70	45	37
ChCl:acetic acid	nil	nil	nil
Citric acid	40	63	35
ChCl:citric acid	32	51	30
Oxalic acid	18	22	12

Electrolyte	Ce(IV)	La(III)	Nd(III)
ChCl:oxalic acid	nil	2	nil

Similarly to ionic liquids [31], DES can be used as a medium to prepare rare-earth-bearing compounds with further uses. A hydrothermal method to ~~prepare monazite-type~~ ^{prepare electrolyte-type} monazite nitrate [65] (KNbO_3) through a deep eutectic solvent (DES), which can be further used as an electrode material for the determination of bisphenol A (BPA), was investigated [66]. This nitrate was prepared from thymol ($\text{C}_{10}\text{H}_{14}\text{O}$) and menthol ($\text{C}_{10}\text{H}_{20}\text{O}$) in a 1:1 ratio.

The cyclic voltammetry of pure CeO_2 , La_2O_3 , Nd_2O_3 , and $\text{PrO}_2/\text{Pr}_2\text{O}_3$ in the deep eutectic solvent Ethaline (1:2 mixture of choline chloride and ethylene glycol) was investigated, and the electrochemical activity of these oxides was assessed [67]. The electro-dissolution of pure oxides and water-leached monazite, after high-temperature pretreatment of the mineral, was carried out in a 0.1 mol/L glucose solution in Ethaline and showed a preferential solubility of about 24% for pure Nd_2O_3 against pure CeO_2 , La_2O_3 , and $\text{PrO}_2/\text{Pr}_2\text{O}_3$, which were found to be insoluble. It was also demonstrated that the electrodissolution of the water-leached monazite was not possible because of the inert behavior of the $\text{Ce}_{1-x}\text{Ln}_x\text{O}_{2-x/2}$ solid solutions. This compound was formed due to the presence of CeO_2 in the product resulting from the high-temperature pretreatment of monazite at low mineral: Na_2CO_3 ratios. Thus, the formation of cerium oxide must be avoided as much as possible. No information was provided regarding what to do with the resulting solutions.

A deep eutectic solvent composed of isostearic acid (HA) and TOPO diluted in toluene was investigated for the selective recovery of scandium from iron, yttrium, and aluminum [68]. The use of a single isostearic acid or TOPO solutions in toluene did not allow the separation of these elements; however, the use of this DES solution improved the separation of scandium and yttrium for the other elements. Moreover, undiluted DES improved metal extraction, i.e., a mixture 2:1 (HA:TOPO) allowed for the selective separation of Sc(III) from Y(III) and Fe(III) at pH values near zero. Scandium was extracted via the formation of a $\text{Sc}(\text{HA})_2\text{A}_3(\text{TOPO})_5$ complex in the organic phase, releasing three protons to the raffinate. This rare earth can be stripped from loaded organic phases via the use of 2 M HCl or sulphuric acid solutions.