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The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new
bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural
products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad
spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic
effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more

effective antiviral drugs.

antiviral peptides infectious diseases marine peptides

| 1. Introduction

Infectious diseases, mainly caused by viral pathogens, remain a primary global health issue that has already
caused a high mortality rate . Many of the most threatening or deadliest human infectious diseases are caused
by viruses, such as human immunodeficiency viruses (HIVs) 2B influenza viruses B3], hepatitis viruses B8, and
the recent emerging pandemic threat of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [l |n
spite of striking development in vaccines and small-molecule antiviral drugs, new emerging and re-emerging viral
disease outbreaks and the progression of antiviral drug resistance and drug toxicity have forced scientists to
perpetually probe novel antiviral agents. Moreover, only a few therapeutic drugs are available for various viruses.
Due to their excellent efficacy, high selectivity, and low potential for resistance development, the development of
peptide-derived drugs to overcome their constraints on stability and bioavailability is becoming a point of interest in
the pharmaceutical industry B2l Hence, antiviral peptides (AVPs) that mainly originate from antimicrobial

peptides (AMPs) with antiviral activities can be prospective antiviral agents to fight viral infections.

AVPs are typically short peptides (generally consisting of 12-50 amino acid residues) with positively charged
(typically +2 to +9) and amphipathic structures [L2II13I4ISII6IL7 |1n addition to these general features enabling
these peptides to serve as antimicrobials (including antibacterials, antifungals, and antiparasitics), hydrophobicity is
likely to be a key characteristic for AVPs to target enveloped viruses 1819 |t js worth mentioning that previous
statistical-analysis-based studies on the Antimicrobial Peptide Database (APD) have shown that hydrophobic

cysteine residues are abundant in AVPs 2021

Interestingly, as a part of the immune system in all living organisms, these promiscuous peptides are the first line of
defense against various pathogens, including viruses. Naturally occurring AMPs with antiviral properties have been

found in almost all multicellular organisms, ranging from plants, animals, mammals, and microbes to marine
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entities. Marine organisms are highly regarded reservoirs of pharmacologically active molecules, including
peptides. These natural-product-based peptides evolve naturally through structural modification to adapt to a harsh
marine environment. The adapted features eventually enable them to sustain biological properties against
pathogens; thus, marine-based peptides have been continuously considered as potential anti-infective drug
candidates [22123],

| 2. Biosynthesis of AVPs: A Brief Overview

Biosynthetically generated through ribosomal or non-ribosomal machinery, the vast chemical structures of peptides
from natural sources—including AVPs—can differ from linear to cyclic, incorporating canonical and non-canonical
amino acids. Essentially, the ribosomal peptides, also designated as ribosomally synthesized and post-
translationally modified peptides (RiPPs), are built upon a set of only 20 standard canonical amino acid residues,
while non-ribosomal peptides (NRPs) can also contain a larger pool of building blocks of both canonical and non-

canonical amino acids [24123],

The chemical diversity of RiPPs is generated by the extensive post-translational modifications (PTMs) whereby
their precursor peptides are modified by dedicated modifying enzymes encoded in the biosynthetic gene cluster. In
brief, the modified peptides subsequently undergo proteolytic cleavage of the leader peptide sequences in the
precursor peptides, and additional PTMs of further modified peptides can be present in certain conditions. Thus,

this leads to the export of mature and active peptides from the cells [23]126],

On the other hand, being decoupled from the ribosome, NRPs are synthesized by a multifunctional modular
enzyme complex, namely, non-ribosomal peptide synthetases (NRPSs). This machinery assembly line generally
consists of initiation, elongation, and termination modules. Each module comprises at least three catalytic domains:
(1) an adenylation domain to select a specific amino acid monomer, (2) a thiolation domain to covalently bind the
activated monomer, and (3) a condensation domain to catalyze peptide elongation. The product release of NRPS
assembly termination can be linear, cyclic, or cyclodepsipeptides. Moreover, further extensive explanations of the

NRPs’ synthesis have been reviewed so far 28](27](28],

| 3. Antiviral Mechanism of Action of AVPs

As specific antiviral drugs are mainly dedicated to treating particular viruses, different phases of the viral life cycle
have been used to search for novel antiviral drugs. AVPs act against enveloped viruses by interrupting the
fundamental stages of their life cycle of entry, synthesis, or assembly. Their inhibition sites include the viral particle
or virion inhibition (virucidal effect), adsorption (cellular association), viral penetration, endosomal escape, viral
uncoating, viral genome replication, and viral assembly, packaging, and release 1423 Moreover, the proposed
mechanism of action of antiviral activity of AVPs may generally encompass (1) their direct binding to the viral
target, which is involved in the direct inhibition of host cell infection or viral pathogenesis; (2) their attachment to the

target on the host surface (indirect inhibition), which is engaged in the competition or interaction with functional
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surface proteins of viruses; and (3) their indirect virus-targeting function through suppression of the viral gene
expression, as well as inhibition of the viral enzymes, e.g., viral polymerase and integrase, related to the
intracellular replication and transcription (biological function inhibition) (Figure 1) [22130[31I[32](33]
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Figure 1. Schematic summary of known antiviral mechanisms of the recently reported marine AVPs.

3.1. Direct Binding Inhibition (Virucidal Effect)

The binding to host cells through interaction with functional receptors is the initial trend in viral infection. Once the
viral particle attaches to a host cell, its genetic material is inserted into the cell during this initial attachment and
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penetration stage. Regarding direct virion inhibition, the AVP papuamide A has shown an immediate virucidal effect
of HIV-1 inhibition through a viral-membrane-targeting mechanism B4[33l This marine peptide bears a tyrosine
hydroxy and an aliphatic moiety tail that have been suggested to interact with the cholesterol membrane of the
virus target and assist with insertion into the viral membrane, respectively, resulting in the subsequent viral

membrane disruption and, ultimately, viral inactivation [35],

3.2. Viral Attachment (Cellular Association) and Entry Inhibition

The indirect binding, as evidenced by the HIV-1-targeting a-defensin human neutrophil peptide HNP-1, has been
found to bind viral envelope Env and host CD4 glycoproteins/co-receptors in a glycan- and serum-independent
manner. In addition, the oligomerization or refolding of HNP-1 could block the viral fusion. Hence, this peptide

requires a multifaceted mode of action for HIV entry inhibition 8137,

Moreover, several studies [B2I38I39][40141] haye reported that two mechanisms of the cellular association or viral
attachment may prevent the entry of the enveloped viruses. In the instance of the activity towards the influenza
virus, firstly, the AVP competes with sialic acid to bind with the envelope glycoprotein—namely, hemagglutinin (HA)
—and clogs its receptor site, inhibiting the influenza virion from interacting with the host cell membrane. The
peptide can imitate sialic acid’s behavior to be recognized by the receptor-binding site of viral HA. Furthermore, the
binding of AVP to the other main component of the influenza virus—namely, N-acetylneuraminic acid—on the host
cell surface can also prevent viral attachment to host cells. Secondly, the conformation of HA is inhibited; thus,
intracellular entry is prohibited, leading to endosomal escape and viral genome release B2, A similar antiviral
activity targeting primary attachment has also been found to inhibit HSV and hepatitis viruses. The AVP with a
positive charge and good hydrophobicity binds to a cellular glycan moiety to prevent HSV from attaching to the
host cell surface 42, This glycan moiety is heparan sulfate, which is known to be a negatively charged
glycosaminoglycan that favors HSV viral particles through its basic positively charged binding pocket in the virion
glycoprotein to attach to the host cell surface. Therefore, the AVP can prevent HSV virion invasion by binding to
glycosaminoglycan molecules as a receptor, hampering the interaction of the virus and the receptor in a host cell.
With respect to hepatitis viruses—particularly HCV—some AVPs have also been demonstrated to interact with the
virion receptors and co-receptors. AVPs that resemble the cellular protein apolipoprotein E (ApoE) can break up
the glycan-dependent interaction or attachment of HCV, hindering entry and infection of target host cells
(hepatocytes) 43144 As observed by Chi et al. (2016) 2l the HCV fusion-inhibitory peptide could block viral
envelope glycoproteins’ E1/E2-mediated membrane fusion by interfering with E1 and E2 heterodimerization.
Moreover, the peptide was likely to provoke the dimer E1/E2 glycoproteins’ conformational changes, impairing HCV
membrane fusion. Additionally, another AVP (CL58) seemed to inhibit viral entry, possibly after initial binding (post-
binding) of the co-receptor cellular membrane protein CD81, and just prior to the final intracellular fusion in
endosomes 48471 Furthermore, these mentioned inhibition mechanisms of the viral membrane fusion stage by

peptides have been further comprehensively discussed elsewhere 48],

3.3. Viral Enzymes and Replication Inhibition
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In addition, AVPs have also been reported to inhibit the viral replication of HSV-2, influenza viruses, and HCV. In
the case of HSV-2, the AVPs can block the transport of a primary viral protein named VP16 into the nucleus. This
transcriptional protein regulator induces immediate expression of viral genes required for survival at the initial
cellular response. Some AVPs that act on influenza viruses also target viral-RNA-dependent RNA polymerase,
comprising PB1, PB2, and PA subunits. These subunits control polymerization and endonuclease cleavage,
recognition, binding to the host mRNAs, and endonuclease activity towards host pre-mRNA. Binding those
subunits, AVPs can also prohibit the assembly of the influenza polymerase complex 131821491 For HCV, AVPs can
act on NS3-4A—a multifunctional enzyme with serine proteinase and helicase functions that are harnessed for
HCV replication BYBL Fyrthermore, to inhibit the replication of the very recent virus SARS-CoV-2, Tonk et al.
(2021) 52 and Heydari et al. (2021) 3 gathered findings on a number of antiviral activities of AVPs that could be
involved. Some AVPs directly act on the viral envelope (virucidal effect), binding to the viral spike glycoprotein that
blocks the interaction with angiotensin-converting enzyme-2 (ACE2) in host cells, hampering endosomal
acidification for uncoating throughout the initial viral life cycle, or escorting the host ACE2 receptor [24I53I[56](57][58]

Moreover, several approaches have been deployed to evaluate the antiviral activity of marine peptides, including
neutralization, viral titration, cell viability, and virus plaque-reduction assays 29. Some selected examples of marine
AVPs that possess antiviral activity against important human enveloped viruses—such as HIV, influenza, HSV,

HCV, and even SARS-CoV-2—are summarized in Figure 1, listed in Table 1, and featured below.

Table 1. Recent reported antiviral bioactive peptides derived from marine organisms during 2011-2021.

Mechanism
Targeted of Antiviral
Vi%us Peptide Biosynthetic Class Origin IC50/ECsplSllinfectivity Action Reference
(Target of
Inhibition)
Sponge
HIV-1 Mirabamides E-H Cyclodepsipeptides/NRPs Stelletta 121, 62, 68, 41 nM Viral fusion 591
clavosa
) Viral entry
HIV-1 Stellettapeptines A Cyclodepsipeptides/NRPs Sponge 23 and 27 nM (Viral (61
and B Stelletta sp.
membrane)
Tunicate
: . ) ) Didemnum 78 UM (cytoprotective) Viral 162]
HIV-1 Mollamide F Cyclodepsipeptide/NRP molle 39 uM (HIV-integrase) integtase
PNGO07-2-050
Endophytic
fungus
HIV-1 Malformin C Cyclopeptide/NRP As’ﬁ; g’r””s 1.4 M ND * (631
SCSIO
Jscw6F30
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Mechanism
Targeted of Antiviral
Vi%us Peptide Biosynthetic Class Origin IC50/ECsolSllinfectivity Action Reference
(Target of
Inhibition)
. N Tunicate
HIV-1 Divamide A Lamh'pep;'dsg;bosoma' Didemnum 0.225 pM PE binding [64)
e molle E11-036
Endophytic
HIN1/H3N2 Asperterrestide A Cyclopeptide/NRP fungqs 20.2 and 0.41 yM ND * (651
Aspergillus
terreus
Viral
Endophytic intercellular
- . ) fungus 9.5 uM (HSV-1) spread [66]
HSV-1 Aspergillipeptide D Cyclopeptide/NRP Aspergillus sp. 12.5 M (ACV-HSV-1) (Viral
SCSIO 41501 glycoprotein
9B)
Endophytic
- ) ) ) fungus N [66]
HSV-1 Aspergillipeptide E Linear peptide/NRP Aspergillus sp. 19.8 yM ND
SCSIO 41501
Fungus
S . . Simplicillium N [67]
HSV-1 Simplicilliumtide J Cyclodepsipeptide/NRP obclavatum 14.1 pM ND
EIODSF 0210
Fungus
HSV-1 verlamelinesAand o o\ qepsipeptide/Nrps o melcillium 16.7 and 15.6 uM ND * (67
B obclavatum
EIODSF 0210
Fungus
HSV-1 AT AT A Cyclopeptide/NRPs Acremonium 16 and 8.7 uM iz (68)
and B persicinum replication
SCSIO 115
Fungus
AlID- Cyclopeptide/NRPs Acremonium 14 pM Ve [68)
acremonpeptide D persicinum replication
SCSIO 115
The
HSV- Mollusk intracellular
Myticin C Ribosomal peptide Mytilus 7.69-8.21/8.32-10.5 phase of (691
1/HSV-2 L .
galloprovincialis viral
replication
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Inhibition)
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HSV- ) ) . 82% (45 pM)/90% (23 Virucidal [70] ) .
1JHSV-2 Pa-MAP Ribosomal peptide Pleurqnectes uM) effect 2021
americanus
Endophytic
Cyclo(l-Tyr-I-Pro) Cyclopeptide fungus -1 NS3-4A &N .
8.2 L , C.
HCV diketopiperazine diketopiperazine/NRP Aspergillus Hgm protease Ty
versicolor ated
) ) Bacterial
Valinomycin; svmbiont
HCV streptodepsipeptides  Cyclodepsipeptides/NRPs Strey fomvces 0-5% ND * (2] .
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