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Beta-oxidation((3-oxidation) is an important metabolic process involving multiple steps by which fatty acid
molecules are broken down to produce energy. The very long-chain fatty acids (VLCFAS), a type of fatty acid (FA),
are usually highly toxic when free in vivo, and their oxidative metabolism depends on the peroxisomal (3-oxidation.
Although peroxisomal -Oxidation attracts less research than mitochondria, the importance of the peroxisomal -

oxidation molecular mechanism can still be spotted from some mechanisms involved in upstream regulation.

peroxisome very long-chain fatty acids beta-oxidation

| 1. PPAR

Peroxisome proliferation activating nuclear receptors (PPARs), members of the steroid hormone nuclear receptor
ligand-dependent transcription factor superfamily, can regulate peroxisome proliferation by regulating the
peroxisome proliferation p-oxidation process . PPARs have three subunits, namely PPARa, PPARP/3, and
PPARy (Figure 1), which differ in tissue distribution, ligand affinity, and target genes. Surprisingly, they are all
related to peroxisomal B-oxidative metabolism [2. Activation of PPARa promotes fatty acid entry into peroxisomes,
and PPARa participates in the regulation of energy homeostasis. By contrast, activation of PPARy causes insulin
sensitization and enhances glucose metabolism, whereas activation of PPARB/d enhances fatty acid oxidation
(FAO).
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Figure 1. The role of PPARs in peroxisomal 3-oxidation.

In the process of peroxisomal -oxidation, PPARs are actively involved in various processes. The dotted arrows in
the figure indicate that the corresponding PPAR members participate in the regulation of the process. Among them,
NEFA: non-esterified fatty acid, FABP1: fatty acid binding protein 1, ELOVL6: ELOVL Fatty Acid Elongase 6,
ACOX1: Acyl-CoA Oxidase 1. The process involving pexophagy was complicated, and “PEX” was only a general

reference.

1.1. PPAR«a

The effect of peroxisome proliferators on the synergistic induction of the peroxisomal [3-oxidation system enzymes
has been well established, which is regulated by PPARa. As a lipid sensor, PPARa can coordinate and promote the
expression of a large number of target genes in the process of FAO, especially in starvation or high-fat diet

conditions B, Studies have shown that PPARa induces the translation of downstream genes under the stimulation
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of long-chain fatty acids (VLCFAS): it promotes the proliferation of peroxisomes, and it specifically upregulates the
expression of peroxisomal B-oxidative proteins and coenzymes . At present, research on PPARa mainly focuses
on its targeted ligands. For example, synthetic lipid-lowering drugs have been shown to activate PPARa and then
regulate the peroxisomal B-oxidation Bl. And in the ruminants, some studies have found that PPARa has different
expression levels in the mammary between the dry and lactation period EIlZ, Further, the study also showed that
PPARa plays an important role in regulating milk fat synthesis in ruminants . In addition to this, PPARa is also
involved in the regulation of fat in the liver BIl2% |nterestingly, PPARa also plays an important role in ruminant
reproduction 212 byt it is not known whether this role is related to peroxisomal B-oxidation, which is a direction
worth exploring. Simply put, regardless of whether the drugs are endogenous or exogenous ligands, their activation

mechanism to bind the PPARa further increases transcriptional activity.

1.2. PPARy

As one of the key transcriptional regulators of adipocyte differentiation, PPARy also plays an important role in
mediating peroxisomal B-oxidation and lipid metabolisms 13, Studies have shown that a variety of genes involved
in fatty acid (FA) transport and metabolism are regulated by PPARy at the transcriptional level, such as FA
translocases, implying that PPARy can stimulate peroxidase by increasing the expression of FA transporters and
FA transportases 141151 The initiation of B-oxidation in vivo has also been proven. By knocking out PPARYy in mice,

it was found that they had obvious lipid metabolism disorders 18,

In dairy cows, PPARY plays an important role which is the critical mediator of lipogenesis 271, One of the significant
roles it plays in dairy cows from the point of view of economic interest is controlling the synthesis of milk fat in dairy
cows, not only in mitochondria but also with ELVOL participating in the regulation of peroxisomal (-oxidation.
PPARy expression increases during changes in the lactation period 2819 thereby regulating peroxisomal p-
oxidation to prevent metabolic stress. Research further confirmed the importance of PPARYy in regulating milk fat
production 29211 Simijlarly, as milk-producing ruminants, goats and sheep are also regulated by PPARy. Many
studies indicate that PPARY is involved in adipocyte differentiation and adipogenesis in sheep/goats [221231(241[25][26]
though, in addition to fat regulation, PPARy was previously thought to be involved in the regulation of hormones in
goats and sheep 27281 However, there has been some relevant research in recent years. Some studies have
pointed out that the role of PPARy and hormones is only a servo-assist mechanism 22. Up to now, there is no

obvious evidence to prove either statement; thus, this is also a worthy question.

1.3. PPARBIS

Compared with PPARa and PPARy, PPAR[/3 is more widely distributed in various tissues in vivo. Aline et al.
showed that PPAR[B/& could participate in the activation of FAO in BATs, but genes involved in processes such as
lipogenesis were not significantly correlated B9, This demonstrates that PPARB/S is a thermogenic transcription
factor in vivo, which bears great resemblance to the purpose of peroxisomal -oxidation. Furthermore, Tong et al.
studied PPARP/d-induced autophagy, although the study assessed expression changes in mitochondria and

revealed the PPARB/3-AMPK/mTOR pathway by searching for a signaling pathway (mTOR, one of the important
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factors of peroxisomal B-oxidation), which further demonstrated that PPARB/®d has a regulatory effect on
peroxisomal B-oxidation B, Recent studies have shown that PPARP/S is indispensable for the upregulation of
autophagic behavior BIB2I331B34I35]  making the relationship between PPARPB/S and peroxisomal B-oxidation more
explicit. When the body is under certain conditions, PPARB/d frees more VLCFAs by upregulating cellular
autophagy, which in turn regulates the initiation and enhancement of peroxisomal 3-oxidation. However, a lot of

research is still needed to confirm what certain conditions are and whether this speculation is correct.

Regardless of which subunit of PPARs is involved in the regulation of peroxisomal (3-oxidation, as PPAR is often
reported to be associated with the occurrence of diseases like type 2 diabetes, PPAR-associated peroxisomal [3-
oxidation changes may also be involved. A study pointed out that inhibition of peroxisome biosynthesis can
interrupt (B-oxidation through the action of PPAR, thereby effectively preventing the occurrence of type 2 diabetes
(361 Nevertheless, the molecular mechanism underlying this phenomenon has not been elucidated. In addition, the
prevalence of some diseases is different by gender B2, and many experiments also show that PPARs are different
in function by gender. PPARa expression is more abundant in native and activated male T cells than in female cells
(381391 suggesting that PPARa has a more substantial role in male T cells than in female T cells. Likewise, multiple
studies have shown that the male hormone androgen has been suggested to influence the expression of PPARa in
male T cells B941142] A study of sex-specific differences in the role of PPARYy in T cell survival has shown that male
PPARy-deficient T cells have increased apoptosis and contain a greater proportion of apoptotic cells than female
PPARy-deficient T cells 43, Some studies have also validated similar conclusions, suggesting that PPARy plays an
important role in T cell survival 444314811471 Although more convincing data are needed to resolve this discrepancy,
PPARy may act as a survival factor in female T cells. Unlike others, the regulatory role of PPARB/d in T cells has

not been well studied, but sex-specific differences in PPARB/d regulation should be considered in future studies.

| 2. PGC-1a

Peroxisome proliferator-activated receptor-gamma coactivator-1la (PGC-1a) is a powerful transcriptional
coactivator that regulates a broad range of physiological and energy homeostasis responses at the transcriptional
level in diverse mammalian tissues. In the past, scholars focused more on the regulatory mechanism of PGC-1a in
controlling mitochondrial function 1849 |n 2010, Bagattin et al. found that PGC-1a coordinates not only
mitochondrial remodeling but also peroxisome specialization and biogenesis 2%, which stimulated an upsurge in
the function study of peroxisome PGC-1a. Moreover, Huang et al. studied peroxisomes in human skeletal muscle
cells. They found that overexpression of PGC-1a induced the expression of AOCX1, and that the levels of some
proteins associated with peroxisome activity also substantially increased 21l In addition, some studies have also

demonstrated the importance of PGC-1a in peroxisomes [521[53],

In conclusion, the regulatory relationship between PGC-1a and peroxisomal [3-oxidation deserves further research
because of the critical functionality of PGC-1a, and it is wondered whether PGC-1a could be used as a novel
chemical modulator for the treatment of Zellweger syndrome symptoms and other diseases. PGC-1a has not been
studied much in ruminants and has mostly focused on regulating fatty acids 2455, But there is one direction worth

mentioning. Zhou et al. found that PGC-1a seems to play a role in the skeletal muscles of goats, and it can also
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maintain metabolic rhythm through the phosphorylation of upstream regulators 8l |t was speculated that this is
related to peroxisomal -oxidation.

| 3. PEX

In 1996, the term peroxin was coined for proteins in peroxisome biogenesis, including peroxisomal matrix protein
import, membrane biogenesis, peroxisome proliferation, and peroxisome inheritance 7. Peroxins are encoded by
PEX genes, also known as PEX proteins. To date, 37 PEX proteins have been discovered and studied. Some are
highly conserved, while others only occur in a limited number of species, such as PEX17, which only distributes in
Fungi, and PEX35, which only distributes in Saccharomycetaceae [28. Most PEX proteins have been shown to play
a significant role in peroxisomal (3-oxidation (Figure 2).

Animals, plants, and protists

PEX15(S. cerevisiae)

S. cerevisiae
APEM9(Plants)

PEX26(Animals) ]

Fungi

ubiquitin conjugating enz)

eroxisome'

Figure 2. The role of different PEX proteins in peroxisomal (3-oxidation.

ATPase complex

PEX5 is the most commonly studied object in eukaryotes. As mentioned above, peroxisomes are very sensitive to
reactive oxygen species (ROS), whereas multiple organelles in the internal environment can produce ROS.

Consequently, peroxisomes themselves are susceptible to the influences of other metabolic processes and
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become dysfunctional. A study found that PEX5 can respond to the expression of ROS and induce cell autophagy

after ubiquitination to prevent damage from excessive or defective peroxisomes from cellular B-oxidation 22!,

More research on PEX has focused on diseases caused by mutation or dysfunction of the PEX gene, including
peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) and rhizomelic chondrodysplasia punctata
(RCDP). Studies have pointed out that PBD-ZSD is caused by PEX gene mutation that results in insufficient
peroxisomal [-oxidation, which increases levels of VLCFAs in plasma and cells. However, so far, there is no
treatment for PBD-ZSD, and researchers have tried to treat it from the perspective of autophagy, but the effect is
not ideal (89, Does this imply that there are unknown mechanisms other than autophagy regulating the relationship
between PEX and (-oxidation? It reminds that long-term neglect makes it impossible to have precise treatment for
diseases caused by peroxisomal B-oxidation disorders, that it can’t be found that the therapeutic target, and thus

further exploration is urgently needed.

Substances entering peroxisomes for p-oxidation need to form receptor cargo complexes with PTS (PTS:
peroxisome targeting sequence, whose role is to locate peroxisomes to ensure accurate transport of carried
substances) and PEX, in which PTS1 is transported by PEX5, and PTS2 is transported by PEX7 and coreceptors
(coreceptors are PEX5, PEX18/21 and PEX20, depending on the species). After the substance enters the

peroxisome, PTS and PEX must be ubiquitinated and recovered.

| 4. ATP-Binding Cassette (ABC)

In peroxisomes, VLCFAs are mainly introduced as CoA through ABCD1-3 (Figure 3). Studies have shown that
peroxisomal B-oxidation is dysfunctional after the deletion of ABCD1/ALDP in vivo, resulting in the expression
levels of VLCFAs in both plasma and tissues being increased 62621 ABCD1 and ABCD2 share a high degree of
sequence homology, except that ABCD2 plays a central role in the metabolism of monounsaturated and
polyunsaturated VLCFASs, rather than saturated VLCFAs, and may be involved in the regulation of oxidative stress
and DHA synthesis 3. ABCD3/PMP70 plays a major role in transporting 2-methylacyl-CoA esters 4. In addition,
despite the distinct functions of peroxisomal ABC transporters, in vitro and in vivo studies have clearly identified
that there is at least partial functional redundancy between these transporters 8268l |n ruminants, ABC is equally
important. Ahmad et al. found that the expression of ABC varies significantly among different milk yields by RNA-
seq (87, Since the expression of ABC is also different between different breeds of cattle, the difference in immunity
may also be related to ABC. And Lopez et al. further verified this conclusion, ABC is indeed related to the immune
system of cattle (68, Although this conclusion was obtained by RNA-seq, it was speculated that this is caused by
the different content of VLCFAs in vivo and the autophagy function of peroxisome; the latest research also
suggests that ABC is involved in intracellular cholesterol-mediated autophagy 2. In addition, the role of ABC was
also found in the reproductive system of sheep /9, revealing that ABC may be related to the degeneration of germ
cells. Although researchers have paid more attention to the transport function of ABCD, it would like to be
emphasized that the X-linked adrenoleukodystrophy (X-ALD) remains a matter of concern because it lacks
peroxisomal B-oxidation caused by ABCD deletion. At present, the only effective treatment is hematopoietic stem

cell transplantation (HSCT), but the risk of death remains high. Some studies have pointed out that the (3-oxidation
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defects can be restored by overexpressing ABCD1/2 in cells, whereas the understanding of its mechanism is still

incomplete U273 As mentioned above, a comprehensive understanding of peroxisomal B-oxidation is urgently

needed.
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Figure 3. The role of the ATP-binding cassette in peroxisomal 3-oxidation.

Different fatty acids enter peroxisome through different ATP-binding cassettes, and ABCD2 has a broader role.
Fatty acids that enter peroxisomes through ABCD3 are processed by different enzymes to achieve oxidation

results.

| 5. Others

New regulators involved in the regulation of peroxisomal [3-oxidation have constantly been identified. AMPK, for
example, promotes FAO by activating the expression of PPARa and ACOX1 478 whereas mTOR promotes the
accumulation of FAs by shutting down B-oxidation 827, Hence, these are considered the AMPK-mTOR pathway
for regulating B-oxidation (8. The NAD-dependent protein lysine deacylases of the sirtuin family regulate various
physiological functions, from energy metabolism to stress responses Z9. Numerous studies have found that Sirtuin
has a variety of catalytic activities B2, These pleiotropic enzymatic activities give sirtuins their far-reaching
functions in maintaining genome integrity, regulating metabolism homeostasis, and promoting organismal longevity.
And a recent study found that sirtuin 5 (SIRT5) functions similarly to mTOR, which shuts down peroxisomal 3-

oxidation by inhibiting the activity of ACOX1 B, Other reports have studied CoA in the process of B-oxidation and
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found that Nudt7 and Nudtl9 in the Nudt superfamily can exert positive effects on CoA substrates in certain
metabolic processes to promote the metabolic process [B2I83] Wjith the upsurge of research on noncoding RNAs
(ncRNAs), some play positive or inhibitory roles in peroxisomal [-oxidation, such as miR-222, miR-25-3p,
circ_0005379, and others [B4831[88I87][881[89] \yhich mainly target the rate-limiting enzyme ACOX1. Recently, Li et al.
analyzed the ACOX1 transcript and found that miR-532-3P could regulate the expression of ACOX1 by targeting
the complementary sequence in the 3-UTR, thereby participating in lipid metabolism 4],

Moreover, other enzymes involved in peroxisomal [(-oxidation were also regulated. Several studies have
demonstrated that phosphatidylserine (PS) can bind to D-bifunctional protein (D-BP) and localize to peroxisomes,
implying that PS can also affect the B-oxidation process 29, It is worth noting that some studies have pointed out
that acetylation is important for the normal functioning of D-BP 192 put related studies are not common; thus, it
is unknown which factors affect its acetylation process. Another key regulatory enzyme of peroxisomal [3-oxidation,
Acetyl-CoA acyltransferase 1 (ACAAL), has been extensively studied. In the breeding of livestock and poultry,
researchers often explore its effects on adipocytes; for example, in goats and sheep, ACAA1 is involved in
regulating adipogenesis. Studies have shown that ACAA1l deficiency increased lipid accumulation and the
triglyceride content and promoted sheep preadipocyte differentiation 23], At the same time, it was also proved that
a regulatory relationship between ACAA1 and PPARYy. Although it does not point out the relationship between such
a phenomenon and peroxisomal (-oxidation, it is not difficult to speculate that peroxisomal -oxidation plays an
important role. And in humans or model animals, researchers have focused on the diseases caused by it 241, At
present, it is generally believed that the expression of PPAR affects the expression of ACCAL, which in turn affects

the process of 3-oxidation.
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