

Lactic Acid Bacteria and Honey Bees

Subjects: [Entomology](#)

Contributor: Massimo Iorizzo , Francesco Letizia* , Sonia Ganassi , Bruno Testa , , Gianluca Albanese , Dalila Di Criscio , Antonio De Cristofaro

Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature.

[honey bee](#)

[gut microbiota](#)

[lactic acid bacteria](#)

1. Introduction

Honey bees play a crucial role in the maintenance of wider biodiversity, ecosystem stability, and agricultural production through pollination [\[1\]](#)[\[2\]](#)[\[3\]](#). While global stocks of managed honey bee colonies appear to be increasing, significant decline and colony losses of wild and domestic bees have been reported in many parts of the world [\[4\]](#)[\[5\]](#)[\[6\]](#)[\[7\]](#).

Multiple biotic and abiotic factors are associated with the honey bee colony losses [\[4\]](#)[\[8\]](#)[\[9\]](#)[\[10\]](#)[\[11\]](#)[\[12\]](#)[\[13\]](#). Furthermore, there is a growing consensus that parasites and pathogens are among the most significant threats to the management of bee colonies [\[14\]](#)[\[15\]](#).

In-depth knowledge of these factors is essential and a prerequisite for developing measures to ensure both healthy bees and sustainable pollination. The aforementioned factors can also influence the honey bees' gut microbiota. Its dysbiosis could weaken the honey bees, thus contributing to the phenomenon of Colony Collapse Disorder (CCD) [\[16\]](#)[\[17\]](#)[\[18\]](#). Moreover, the gastrointestinal tract of honey bee's larvae and adult bees is the infection and transmission site of different pathogens, such as *Ascospaera apis*, *Nosema ceranae*, *Paenibacillus larvae*, *Melissococcus plutonius*, and viruses. These pathogens may cause economic losses in agriculture, affecting the survival of managed and wild honey bees [\[19\]](#)[\[20\]](#)[\[21\]](#)[\[22\]](#). Recently, many different control measures, such as fungicides, antibiotics, heterocyclic organic compounds (indoles), and bacteriophages, have been used to control honey bee diseases [\[23\]](#)[\[24\]](#). Most of these products were promising in terms of controlling the growth of pathogens both *in vitro* and *in vivo*. Nevertheless, these approaches could be useful as therapy, but are often ineffective for prophylactic purposes, leaving the honey bee colonies vulnerable to diseases. In addition, the use of antibiotics in beekeeping is legally banned in many countries of the European Union [\[25\]](#), due to the risks for both human and honey bee health [\[17\]](#)[\[26\]](#), and to the uncontrolled spread of antimicrobial genes [\[27\]](#). Therefore, there is a growing interest in new effective means of controlling disease and improvement in honey bee health, as well as providing benefits for

agriculture by increasing yield and quality of crop production. The use of naturally occurring compounds for disease control could be an interesting approach that needs to be further investigated because the findings to date have not always been of biological relevance [28][29][30].

The gut microbiota is fundamental for honey bee's growth and development, immune function, protection against pathogen invasion [17]. A well-balanced microbiota is essential to support honey bee health and vigor, moreover, the structure of the intestinal bacterial community can become an indicator of the honey bee health [31][32][33].

The gut microbial communities can also provide an important new tool to improve disease management strategies and contribute to the development of novel and sustainable disease monitoring approaches [34][35][36]. More in general, the manipulation and the exploitation of the insect microbiota could be effective in developing strategies for the management of insect-related problems [37][38]. Indeed, this approach, generally defined as 'Microbial Resource Management' (MRM), was described as 'Symbiont Resource Management' (SMR) when applied to symbiotic microorganisms. The MRM refers to the proper management of the microbial resource, present in a given ecosystem, in order to solve practical problems through the use of microorganisms. One of the environmental hot topics is represented by the gastrointestinal tract (GIT) defined as an "outside world within living animals" [39]. The main objective is to control and steer microbial communities, and microbial processes, in the most sustainable way.

Moreover, the protection against pathogens and/or parasites is one of the frequently associated aspects of a balanced intestinal microbiota. Indeed, it is widely known that the early stages of pathogens infection can be eased by any nutritional or environmental stress causing microbial dysbiosis. In several studies, it has been proven that, among the microbial symbionts associated with the honey bee, the lactic acid bacteria have a probiotic effect on bees by stimulating their immunity and helping them to overcome pathogen attacks [40][41][42][43]. Different mechanisms, among which the direct pathogen inhibition by the release of antimicrobial compounds, the stimulation of the immune system, and the competitive exclusion, mediated by the microbial symbionts, could be involved in the honey bee protection.

2. Gut Microbiota of Honey Bee: Presence and Role of Lactic Acid Bacteria (LAB)

The GIT microbiota structure of honey bees (*Apis mellifera*) is both unique and highly specialized; in detail, the dominant bacterial phyla belong to Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes [44][45]. In social insects, such as the honey bees, the intestinal bacteria are transmitted and shared by colony members through oral–fecal and trophallactic transmission. However, consumption of stored pollen or bee bread, contact with older bees within the hive, and hive material during the adult phase are also involved in transmitting and sharing the bacteria [17][44][45].

The lactic acid bacteria (LAB) are normal inhabitants of the GIT of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature [46][47][48]. These bacteria belong to a biologically

defined group where lactic acid is produced during homo- or hetero-fermentative metabolism.

Soil and plants are considered the hypothetical first niche of the ancestral LAB, followed by the gut of herbivorous animals [49]; the transition from the soil and the plants to the animal gut occurred by three areas of genomic adaptation [50][51]: resistance to host barriers, adhesion to intestinal cells, and fermentation.

A bees' gut is the optimal microenvironment for LAB as it is defined by microaerobic conditions, presence of nectar and sugars, optimal temperature. Olofsson et al. [52] suggested that bees and their microbiota are mutually dependent, in fact, LABs received a niche in which nutrients were available and bees gained protection [35][53][54].

LABs' importance is further emphasized by their ecological distribution, which is not limited to adult bee gut only, in fact, they have been isolated from larval guts [55] and the honey stomach of adult bees [56]. This latter structure, adjacent to the midgut, is a further relevant microbial niche associated with food storage and liquid transfer (water, nectar, and royal jelly). In addition, LABs are also dominant in the hive environment (beebread, honey, wax, and comb) [46][47][48][52][53][54][56][57][58].

LABs have also been extensively studied in animals and humans because of their probiotic properties, which have led to their well-built commercial exploitation in the food, feed, and pharmaceutical market [59][60][61][62][63]. The finding that a component of the honey bee gut microbiota was represented by LABs has increased the interest of scientists in looking for similarities and analogies with the probiotic bacteria widely investigated in humans and animals.

3. Functional Properties of LAB

There are several properties through which LABs can provide a specific health benefit for the honey bees [60][61][62].

The following section discusses some functional properties of LAB supplemented as probiotics in bee feeding. **Table 1** provides an overview of the main results obtained in several studies.

Table 1. Overview of the main results obtained using LABs as probiotics in the honey bee diet.

LAB Species	Source	Relevant Reported Results	Ref.
<i>L. kunkeei</i> <i>F. fructosus</i>	Honey bee gastrointestinal tract	Decreases of the mortality rate and significant enhancement of the longevity of honey bees.	[64]
<i>L. johnsonii</i>		Queen egg-laying stimulation; higher number of honey bees and a significant increase in honey yield, healthier bee colony	[65] [66] [67]
<i>L. johnsonii</i> <i>L. kunkeei</i> <i>L. plantarum</i> <i>L. salivarius</i>		Increased honey production	[42] [68]

LAB Species	Source	Relevant Reported Results	Ref.
<i>Bifidobacterium</i> spp. <i>Lactobacillus</i> spp.		Mild increment in bee survival	[69]
<i>B. lactis</i> <i>L. acidophilus</i> <i>L. casei</i>		Enhancement of bee health. Increased honey production and size of the wax cells	[70] [71] [72]
<i>B. bifidum</i> <i>L. acidophilus</i> <i>L. delbrueckii</i> sub. bulgaricus	Commercial probiotic product	Administration in pollen substitute resulted in an increase in dry mass and crude fat level	[73]
<i>L. brevis</i>		Increased expression of genes encoding antimicrobial peptides (abaecin, defensin-1)	[74]
<i>L. plantarum</i> , <i>L. rhamnosus</i>		Mitigate antibiotic-associated microbiota dysbiosis and immune deficits in adult workers	[75]
LAB mix: <i>B. breve</i> <i>B. longum</i> <i>L. acidophilus</i> <i>L. casei</i> <i>L. plantarum</i> <i>L. rhamnosus</i>		Enhance honey bee immunity. Higher levels for abaecin and defensin in honey bee larvae	[76]
Multiple LAB species	Commercial probiotic product	Boosting colonies' strength. Positive physiological changes in probiotic-treated groups of adult bees	[77]
<i>B. bifidum</i> <i>E. faecium</i> <i>L. acidophilus</i> <i>P. acidilactici</i>		Advantages of probiotic supplementation include better bee survival and higher dry mass and crude fat level	[73]
<i>B. asteroides</i> <i>F. fructosus</i> <i>F. pseudofulneus</i> <i>F. tropaeoli</i>	Honey bee hive	Induced immune stimulation (higher level of Apidaecin1). Results suggest that the bee immune response to endogenous bacteria is species-specific	[78]
<i>L. kunkeei</i>		Mitigate antibiotic-associated microbiota dysbiosis	[75]
<i>Fructobacillus</i> spp.		Able to utilize lignin and promote the growth of honey bee gut community members	[79]
<i>E. thailandicus</i> <i>L. curvatus</i> <i>W. cibaria</i> <i>W. viridescens</i>	Different sources	The transcription levels of antimicrobial peptide genes, such as abaecin, defensin, and hymenoptaecin, were found to increase significantly	[80]

3.1. Heavy Metals Detoxification

LAB Species	Source	Relevant Reported Results	Ref.
<i>W. paramesenteroides</i> <i>parvum</i>	[81][82][83][84]	to the survival, feeding, growth, and impair the behavior of the organisms including honey bees [85][86][87][88][89]. It has been widely demonstrated that the honey bee populations are susceptible to several environmental threats, including HMs [81]. The honey bees can be exposed to HMs when foraging on contaminated honey and pollen resources and, in some cases, by airborne exposure [90][91]. The HMs also bioaccumulate in larval and adult stages, in the colony's honey, wax, and propolis supplies [86][91], making the honey bees excellent bioindicators of HMs presence in the environment [92][93]. Some reports indicate that the honey bee cell ultrastructure can be adversely affected by HMs, inducing cell apoptosis that can disrupt cell vigor and cell proliferation. HMs can also negatively affect the genetic material, resulting in mutation, and in addition, they also cause neurotoxic effects [86][89][91][94][95][96][97][98][99][100]. Other studies have shown that the HMs may affect antioxidant capacity and immunocompetence in honey bees [87][88][101].	biological or harmful damage

Many bacteria, including the LABs, appear to have the ability to efficiently remove the HMs through two mechanisms: biosorption and bioaccumulation [102][103][104][105]. Biosorption refers to the binding of metals onto the cell wall's surface and it is a simple physicochemical process, whereas the bioaccumulation process refers to the intracellular accumulation of metals that occur in two stages, biosorption and bioaccumulation by transporting the metals across the cell wall and membrane [106][107][108]. Recently, the next generation of probiotics has attracted increasing attention [103][109][110] for their ability to alleviate HMs toxicity, although, most of the studies have been performed with an in vitro digestion or animal model. [75][103][111][112][113][114][115][116][117][118]. Based on this research, specific LABs could be used as a new dietary therapeutic strategy against HMs toxicity. In this regard, Rothman et al. [85] demonstrated that some honey bee symbiotic LABs are capable of in vitro metals' bioaccumulation. However, these results are preliminary and so, more in-depth, systematic, and epidemiological studies need to be performed on honey bees.

3.2. Mitigation of Pesticides Effect

Pesticides, such as insecticides and fungicides, are considered one of the possible stressors causing the general decline in honey bees and colony losses [5][12][119]. The exposure of honey bees to pesticides also causes microbial dysbiosis and immunosuppression, rendering them more susceptible to pathogens; furthermore, the interactions between pesticides and pathogens may exacerbate honey bees' mortality [120][121][122][123][124][125][126][127][128][129][130]. A novel concept may be the administration of lactic acid bacteria to mitigate the harmful effects of pesticides. There are several mechanisms through which the treatment with probiotics could act on pesticide intoxication; for example, the treatment with *Pediococcus acidilactici* restored the expression of two genes, which were altered by pesticide co-exposure, coding for serine protease 40 and vitellogenin [131]. Moreover, the benefit of LAB supplementation is a reduction in pesticide uptake through their degradation [132][133][134][135] or sequestration of ingested organophosphate pesticides, which has been associated with reduced intestinal absorption and insect toxicity with appropriate models [136][137]. In other model organisms, LABs have been shown to reduce toxicity and

exert a protective effect on the host [135][138][139][140], thus establishing a basis for future studies to investigate this potential in honey bees. Recently, some authors have highlighted how the resistance and capacity of LABs for degrading organophosphorus pesticides is strain-dependent [134][141] and showed the feasibility of the LAB to be developed into probiotic products capable of alleviating oxidative damage caused by pesticides *in vivo* [142].

Based on this knowledge, probiotic supplementation with appropriate LAB cultures could mitigate the sublethal effects of pesticides by reducing pesticide uptake, improving pathogen resistance, and mitigating sublethal effects on colony development. Until chemical agents are no longer used in agriculture, the ability to supplement honey bees with probiotics could help the insects to fight the unintended pernicious effects [143].

3.3. Adhesion to Intestinal Mucosa and Enhancement of the Epithelial Barrier

Adhesion to intestinal epithelial cells is a prerequisite for the colonization of probiotic bacteria, leading to transitory colonization that would foster the immune response and, at the same time, stimulate the intestinal barrier and metabolic functions. In addition, this ability to adhere to the host may serve a protective role against undesirable microorganisms through competition for host cell-binding sites [108][144][145][146].

As reported in a number of studies, during this adaptation phase, bacteria produce extracellular polymeric substances (EPS), containing biological macromolecules, some of which (polysaccharides, proteins, nucleic acids, and lipids) are also responsible for the cohesion of microorganisms and are implicated in the production of biofilms [146][147].

3.4. Participation in the Digestive Process

The honey bee gut microbiota, as well as that of other insects, synthesize essential nutritional compounds and improve the digestion efficiency and availability of nutrients [17][47][148]. A properly functioning gut microbiota is closely connected to the health of the honey bee since it provides countless enzymatic activities to break down the complex sugars of the honey bees' diet. Iorizzo et al. [48] proved that some *Lactiplantibacillus plantarum* (previously *Lactobacillus plantarum*) strains isolated from honey bee gut possess both alpha- and beta-glycosidase activities. The enzyme beta-glycosidase in association with other enzymes, cellulase, and hemicellulase produced by bee intestinal symbionts, such as *Gilliamella*, contributes to the hydrolysis of cellulose [149]. The alpha-glycosidase converts maltose to glucose and with alpha-amylase, is involved in the starch breakdown [150].

Honey bees collect food rich in carbohydrates, such as sucrose, glucose, and fructose, which are important for the development and well-being of their colonies [151]. However, other carbohydrates present in their diet in lesser quantities, such as monosaccharides (e.g., mannose, galactose, xylose, arabinose, rhamnose) and oligosaccharides (e.g., lactose, melibiose, raffinose, and melezitose), may be toxic to bees as they do not have specific enzymatic activity for their metabolism [152][153]. Iorizzo et al. [154][155] evidenced that some *Apilactibacillus kunkeei* (previously *Lactobacillus kunkeei*) and *Lp. plantarum* strains can metabolize arabinose, galactose, lactose, mannose, melibiose, melezitose, and raffinose. As they are able to simultaneously intervene in

the breakdown of complex polysaccharides and metabolize toxic sugars, the role of LABs in enhancing food tolerance and maintaining the health of their hosts could be considerable [156].

3.5. Antioxidative Activity

Recent research demonstrated that several biotic and abiotic factors, induce oxidative stress and impair the antioxidant defensive capacity of honey bee larvae [9][157][158][159][160].

Oxidative stress is an important process that can cause severe negative effects in eukaryotic organisms. Reactive oxygen species (ROS) are produced during normal metabolic processes and are responsible for oxidative stress. To prevent or reduce ROS-induced oxidative stress, insects use various enzymatic mechanisms that cause oxidative inactivation (superoxide dismutase, catalase, and peroxidase) or removal of ROS at the intracellular level through the enzymes glutathione peroxidase (GPX) and glutathione reductase (GSR) [161][162][163].

These particular enzyme activities are relevant for the health of honey bees when they are under biotic and abiotic stressors, such as nutritional and thermal stress, parasites, heavy metals, and/or pesticides [9][129][157][164][165][166][167][168]. Oxidative stress can also be a consequence of some honey bee diseases; in fact, during the excessive growth of pathogens, the levels of ROS in the infection site increase [160]. Dussaubat et al. [169], and more recently Li et al. [158], reported that the oxidative stress in honey bee larvae and the decreased levels of metabolites involved in mitigating oxidative stress induced by *Ascospheara apis* could disrupt the antioxidant defenses of the infected larvae. Antioxidant enzymatic activity and the amounts of certain metabolites (e.g., taurine, docosahexaenoic acid, and L-carnitine) involved in reducing oxidative stress were significantly decreased in the gut of infected larvae [158]. In recent years, particular attention has been focused on the application of LABs as natural antioxidants. Some strains belonging to this group have both enzymatic and non-enzymatic antioxidant activity, which can reduce the oxidative damage caused by the accumulation of ROS during the digestive process [170][171][172]. Probiotic LABs have complex antioxidant mechanisms, and different strains use different mechanisms: chelation of toxic ions (Fe^{2+} and Cu^{2+}); synthesis of antioxidant compounds (e.g., glutathione, butyrate, folate, and exopolysaccharides); activation of transcription of enzymes that neutralize free radicals [173][174][175]. Further research aimed at the selection, and diet utilization, of appropriate probiotics that can contribute to the reduction in oxidative stress in honey bees, would be interesting.

References

1. Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. *Trends Ecol. Evol.* 2010, 25, 345–353.
2. Klein, A.-M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. *Proc. R. Soc. B Biol. Sci.* 2007, 274, 303–313.

3. Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J. Safeguarding pollinators and their values to human well-being. *Nature* 2016, 540, 220–229.
4. Gray, A.; Brodschneider, R.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charriere, J.-D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; Amaro da Costa, C. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. *J. Apic. Res.* 2019, 58, 479–485.
5. Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.-P. Drivers of colony losses. *Curr. Opin. Insect Sci.* 2018, 26, 142–148.
6. Moritz, R.F.; Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. *Agric. Ecosyst. Environ.* 2016, 216, 44–50.
7. Meeus, I.; Pisman, M.; Smagghe, G.; Piot, N. Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. *Curr. Opin. Insect Sci.* 2018, 26, 136–141.
8. Alaux, C.; Le Conte, Y.; Decourtye, A. Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. *Front. Ecol. Evol.* 2019, 7, 60.
9. Morimoto, T.; Kojima, Y.; Toki, T.; Komeda, Y.; Yoshiyama, M.; Kimura, K.; Nirasawa, K.; Kadokawa, T. The habitat disruption induces immune-suppression and oxidative stress in honey bees. *Ecol. Evol.* 2011, 1, 201–217.
10. Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* 2015, 347, 1255957.
11. Otto, C.R.; Roth, C.L.; Carlson, B.L.; Smart, M.D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the northern great plains. *Proc. Natl. Acad. Sci. USA* 2016, 113, 10430–10435.
12. Stanimirović, Z.; Glavinić, U.; Ristanić, M.; Aleksić, N.; Jovanović, N.; Vejnović, B.; Stevanović, J. Looking for the causes of and solutions to the issue of honey bee colony losses. *Acta Vet.* 2019, 69, 1–31.
13. Havard, T.; Laurent, M.; Chauzat, M.-P. Impact of stressors on honey bees (*Apis mellifera*; Hymenoptera: Apidae): Some guidance for research emerge from a meta-analysis. *Diversity* 2020, 12, 7.
14. Genersch, E. American Foulbrood in honeybees and its causative agent, *Paenibacillus larvae*. *J. Invertebr. Pathol.* 2010, 103, S10–S19.

15. Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. *Appl. Microbiol. Biotechnol.* 2010, 87, 87–97.
16. Cox-Foster, D.L.; Conlan, S.; Holmes, E.C.; Palacios, G.; Evans, J.D.; Moran, N.A.; Quan, P.-L.; Briese, T.; Hornig, M.; Geiser, D.M. A Metagenomic survey of microbes in honey bee colony collapse disorder. *Science* 2007, 318, 283–287.
17. Raymann, K.; Moran, N.A. The role of the gut microbiome in health and disease of adult honey bee workers. *Curr. Opin. Insect Sci.* 2018, 26, 97–104.
18. Anderson, K.E.; Ricigliano, V.A. Honey bee gut dysbiosis: A novel context of disease ecology. *Vectors Med. Vet. Entomol. Soc. Insects* 2017, 22, 125–132.
19. Evison, S.E.; Jensen, A.B. The biology and prevalence of fungal diseases in managed and wild bees. *Ecol. Parasites Parasit. Biol. Control* 2018, 26, 105–113.
20. Forsgren, E. European foulbrood in honey bees. *J. Invertebr. Pathol.* 2010, 103, S5–S9.
21. Ebeling, J.; Knispel, H.; Hertlein, G.; Fünfhaus, A.; Genersch, E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. *Appl. Microbiol. Biotechnol.* 2016, 100, 7387–7395.
22. Fries, I. Nosema ceranae in European honey bees (*Apis mellifera*). *J. Invertebr. Pathol.* 2010, 103, S73–S79.
23. Reybroeck, W.; Daeseleire, E.; De Brabander, H.F.; Herman, L. Antimicrobials in beekeeping. *Vet. Microbiol.* 2012, 158, 1–11.
24. Jończyk-Matysiak, E.; Popiela, E.; Owczarek, B.; Hodyra-Stefaniak, K.; Świtała-Jeleń, K.; Łodej, N.; Kula, D.; Neuberg, J.; Migdał, P.; Bagińska, N. Phages in therapy and prophylaxis of american foulbrood—recent implications from practical applications. *Front. Microbiol.* 2020, 11, 1913.
25. Mutinelli, F. European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee diseases. *Apiacta* 2003, 38, 156–168.
26. Raymann, K.; Shaffer, Z.; Moran, N.A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. *PLoS Biol.* 2017, 15, e2001861.
27. Lodesani, M.; Costa, C. Limits of chemotherapy in beekeeping: Development of resistance and the problem of residues. *Bee World* 2005, 86, 102–109.
28. Brosi, B.J.; Delaplane, K.S.; Boots, M.; de Roode, J.C. Ecological and evolutionary approaches to managing honeybee disease. *Nat. Ecol. Evol.* 2017, 1, 1250–1262.
29. Tauber, J.P.; Collins, W.R.; Schwarz, R.S.; Chen, Y.; Grubbs, K.; Huang, Q.; Lopez, D.; Peterson, R.; Evans, J.D. Natural product medicines for honey bees: Perspective and protocols. *Insects* 2019, 10, 356.

30. Abou-Shaara, H. Continuous management of Varroa mite in honey bee, *Apis mellifera*, colonies. *Acarina* 2014, 22, 149–156.

31. Hamdi, C.; Balloï, A.; Essanaa, J.; Crotti, E.; Gonella, E.; Raddadi, N.; Ricci, I.; Boudabous, A.; Borin, S.; Manino, A.; et al. Gut microbiome dysbiosis and honeybee health. *J. Appl. Entomol.* 2011, 135, 524–533.

32. Cariveau, D.P.; Elijah Powell, J.; Koch, H.; Winfree, R.; Moran, N.A. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (*Bombus*). *ISME J.* 2014, 8, 2369–2379.

33. Daisley, B.A.; Chmiel, J.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. *Trends Microbiol.* 2020, 28, 1010–1021.

34. Evans, J.D.; Armstrong, T.-N. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. *BMC Ecol.* 2006, 6, 4.

35. Anderson, K.E.; Sheehan, T.H.; Eckholm, B.J.; Mott, B.M.; DeGrandi-Hoffman, G. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (*Apis mellifera*). *Insectes Sociaux* 2011, 58, 431.

36. Wu, M.; Sugimura, Y.; Iwata, K.; Takaya, N.; Takamatsu, D.; Kobayashi, M.; Taylor, D.; Kimura, K.; Yoshiyama, M. Inhibitory effect of gut bacteria from the Japanese honey bee, *Apis cerana japonica*, against *Melissococcus plutonius*, the causal agent of European foulbrood disease. *J. Insect Sci. Online* 2014, 14, 129.

37. Crotti, E.; Balloï, A.; Hamdi, C.; Sansonno, L.; Marzorati, M.; Gonella, E.; Favia, G.; Cherif, A.; Bandi, C.; Alma, A.; et al. Microbial symbionts: A resource for the management of insect-related problems. *Microb. Biotechnol.* 2012, 5, 307–317.

38. Crotti, E.; Sansonno, L.; Prosdocimi, E.M.; Vacchini, V.; Hamdi, C.; Cherif, A.; Gonella, E.; Marzorati, M.; Balloï, A. Microbial symbionts of honeybees: A promising tool to improve honeybee health. *New Biotechnol.* 2013, 30, 716–722.

39. Verstraete, W. Microbial ecology and environmental biotechnology. *ISME J.* 2007, 1, 4–8.

40. Gaggia, F.; Baffoni, L.; Alberoni, D. Probiotics for honeybees' health. In *Probiotics and Prebiotics in Animal Health and Food Safety*; Di Gioia, D., Biavati, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 219–245. ISBN 978-3-319-71950-4.

41. Audisio, M.C. Gram-positive bacteria with probiotic potential for the *Apis mellifera* L. honey bee: The experience in the Northwest of Argentina. *Probiotics Antimicrob. Proteins* 2017, 9, 22–31.

42. Pietropaoli, M.; Carpana, E.; Milito, M.; Palazzetti, M.; Guarducci, M.; Croppi, S.; Formato, G. Use of *Lactobacillus plantarum* in preventing clinical cases of American and European foulbrood in central Italy. *Appl. Sci.* 2012, 12–1388.

43. Alberoni, D.; Baffoni, L.; Gaggia, F.; Ryan, P.; Murphy, K.; Ross, P.; Stanton, C.; Di Gioia, D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of *Apis mellifera* L. *Benef. Microbes* 2018, 9, 269–278.

44. Kwong, W.K.; Engel, P.; Koch, H.; Moran, N.A. Genomics and host specialization of honey bee and bumble bee gut symbionts. *Proc. Natl. Acad. Sci. USA* 2014, 111, 11509–11514.

45. Kwong, W.K.; Moran, N.A. Gut microbial communities of social bees. *Nat. Rev. Microbiol.* 2016, 14, 374–384.

46. Endo, A.; Salminen, S. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. *Syst. Appl. Microbiol.* 2013, 36, 444–448.

47. Engel, P.; Moran, N.A. The gut microbiota of insects—diversity in structure and function. *FEMS Microbiol. Rev.* 2013, 37, 699–735.

48. Iorizzo, M.; Pannella, G.; Lombardi, S.J.; Ganassi, S.; Testa, B.; Succi, M.; Sorrentino, E.; Petrarca, S.; De Cristofaro, A.; Coppola, R.; et al. Inter- and intra-species diversity of lactic acid bacteria in *Apis mellifera ligustica* colonies. *Microorganisms* 2020, 8, 1578.

49. Morelli, L.; von Wright, A. Genetics of lactic acid bacteria. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2019; pp. 17–32. ISBN 0-429-05746-6.

50. Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Genes and molecules of lactobacilli supporting probiotic action. *Microbiol. Mol. Biol. Rev. MMBR* 2008, 72, 728–764.

51. Klaenhammer, T.R.; Barrangou, R.; Buck, B.L.; Azcarate-Peril, M.A.; Altermann, E. Genomic features of lactic acid bacteria effecting bioprocessing and health. *FEMS Microbiol. Rev.* 2005, 29, 393–409.

52. Olofsson, T.C.; Butler, È.; Markowicz, P.; Lindholm, C.; Larsson, L.; Vásquez, A. Lactic acid bacterial symbionts in honeybees—An unknown key to honey's antimicrobial and therapeutic activities. *Int. Wound J.* 2016, 13, 668–679.

53. Endo, A.; Futagawa-Endo, Y.; Dicks, L.M.T. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. *Syst. Appl. Microbiol.* 2009, 32, 593–600.

54. Filannino, P.; Di Cagno, R.; Tlais, A.Z.A.; Cantatore, V.; Gobbetti, M. Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic Species. *Crit. Rev. Microbiol.* 2019, 45, 65–81.

55. Gaggia, F.; Baffoni, L.; Stenico, V.; Alberoni, D.; Buglione, E.; Lilli, A.; Di Gioia, D.; Porrini, C. Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. *Bull. Insectol.* 2015, 68, 321–327.

56. Olofsson, T.C.; Vásquez, A. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee *Apis mellifera*. *Curr. Microbiol.* 2008, 57, 356–363.

57. Cilia, G.; Fratini, F.; Tafi, E.; Turchi, B.; Mancini, S.; Sagona, S.; Nanetti, A.; Cerri, D.; Felicioli, A. Microbial profile of the ventriculum of honey bee (*Apis mellifera ligustica* Spinola, 1806) fed with veterinary drugs, dietary supplements and non-protein amino acids. *Vet. Sci.* **2020**, *7*, 76.

58. Cilia, G.; Fratini, F.; Tafi, E.; Mancini, S.; Turchi, B.; Sagona, S.; Cerri, D.; Felicioli, A.; Nanetti, A. Changes of western honey bee *Apis mellifera ligustica* (Spinola, 1806) ventriculus microbial profile related to their in-hive tasks. *J. Apic. Res.* **2021**, *60*, 198–202.

59. Royan, M. Mechanisms of probiotic action in the honeybee. *Crit. Rev. Eukaryot. Gene Expr.* **2019**, *29*, 95–103.

60. Jing, T.-Z.; Qi, F.-H.; Wang, Z.-Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? *Microbiome* **2020**, *8*, 38.

61. Quinto, E.J.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic lactic acid bacteria: A review. *Food Nutr.* **2014**, *5*, 1765–1775.

62. Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; da Silva, R.C.; Ibrahim, S.A. Lactic acid bacteria: Food safety and human health applications. *Dairy* **2020**, *1*, 202–232.

63. Mora-Villalobos, J.A.; Montero-Zamora, J.; Barboza, N.; Rojas-Garbanzo, C.; Usaga, J.; Redondo-Solano, M.; Schroedter, L.; Olszewska-Widdrat, A.; López-Gómez, J.P. Multi-product lactic acid bacteria fermentations: A review. *Fermentation* **2020**, *6*, 23.

64. Pachla, A.; Ptaszyńska, A.A.; Wicha, M.; Kunat, M.; Wydrych, J.; Oleńska, E.; Małek, W. Insight into probiotic properties of lactic acid bacterial endosymbionts of *Apis mellifera* L. derived from the polish apiary. *Saudi J. Biol. Sci.* **2021**, *28*, 1890–1899.

65. Audisio, M.; Benítez-Ahrendts, M. *Lactobacillus johnsonii* CRL1647, isolated from *Apis mellifera* L. bee-gut, exhibited a beneficial effect on honeybee colonies. *Benef. Microbes* **2011**, *2*, 29–34.

66. Audisio, M.C.; Sabate, D.C.; Benítez-Ahrendts, M.R. Effect of *Lactobacillus johnsonii* CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. *Benef. Microbes* **2015**, *6*, 687–695.

67. Maggi, M.; Negri, P.; Plischuk, S.; Szawarski, N.; De Piano, F.; De Feudis, L.; Egularas, M.; Audisio, C. Effects of the organic acids produced by a lactic acid bacterium in *Apis mellifera* colony development, *Nosema ceranae* control and fumagillin efficiency. *Vet. Microbiol.* **2013**, *167*, 474–483.

68. Fanciotti, M.N.; Tejerina, M.; Benítez-Ahrendts, M.R.; Audisio, M.C. Honey yield of different commercial apiaries treated with *Lactobacillus salivarius* A3iob, a new bee-probiotic strain. *Benef. Microbes* **2018**, *9*, 291–298.

69. Máčová, M.; Rada, V.; Huk, J.; Smékal, F. Development of probiotics for bees. *Apacta* 1997, 4, 99–111.

70. Pătruică, S.; Mot, D. The Effect of Using prebiotic and probiotic products on intestinal micro-flora of the honeybee (*Apis mellifera carpatica*). *Bull. Entomol. Res.* 2012, 102, 619–623.

71. Pătruică, S.; Dumitrescu, G.; Popescu, R.; Filimon, N.M. The effect of prebiotic and probiotic products used in feed to stimulate the bee colony (*Apis mellifera*) on intestines of working bees. *J. Food Agric. Environ.* 2013, 11, 2461–2464.

72. Pătruică, S.; Huțu, I. Economic benefits of using prebiotic and probiotic products as supplements in stimulation feeds administered to bee colonies. *Turk. J. Vet. Anim. Sci.* 2013, 37, 259–263.

73. Kaznowski, A.; Szymbas, B.; Jazdzinska, E.; Kazimierczak, M.; Paetz, H.; Mokracka, J. The effects of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honey bees (*Apis mellifera*). *J. Apic. Res.* 2005, 44, 10–14.

74. Maruščáková, I.C.; Schusterová, P.; Bielik, B.; Toporčák, J.; Bíliková, K.; Mudroňová, D. Effect of application of probiotic pollen suspension on immune response and gut microbiota of honey bees (*Apis mellifera*). *Probiotics Antimicrob. Proteins* 2020, 12, 929–936.

75. Daisley, B.A.; Pitek, A.P.; Chmiel, J.A.; Gibbons, S.; Chernyshova, A.M.; Al, K.F.; Faragalla, K.M.; Burton, J.P.; Thompson, G.J.; Reid, G. *Lactobacillus* spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. *Commun. Biol.* 2020, 3, 534.

76. Evans, J.D.; Lopez, D.L. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). *J. Econ. Entomol.* 2004, 97, 752–756.

77. Tlak Gajger, I.; Vlaić, J.; Šoštarić, P.; Prešern, J.; Bubnić, J.; Smodiš Škerl, M.I. Effects on some therapeutical, biochemical, and immunological parameters of honey bee (*Apis mellifera*) exposed to probiotic treatments, in field and laboratory conditions. *Insects* 2020, 11, 638.

78. Janashia, I.; Alaix, C. Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). *J. Econ. Entomol.* 2016, 109, 1474–1477.

79. Rokop, Z.P.; Horton, M.A.; Newton, I.L.G. Interactions between cooccurring lactic acid bacteria in honey bee hives. *Appl. Environ. Microbiol.* 2015, 81, 7261–7270.

80. Yoshiyama, M.; Wu, M.; Sugimura, Y.; Takaya, N.; Kimoto-Nira, H.; Suzuki, C. Inhibition of *Paenibacillus* Larvae by lactic acid bacteria isolated from fermented materials. *J. Invertebr. Pathol.* 2013, 112, 62–67.

81. Feldhaar, H.; Otti, O. Pollutants and their interaction with diseases of social Hymenoptera. *Insects* 2020, 11, 153.

82. Zwolak, A.; Sarzyńska, M.; Szpyrk, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. *Water Air Soil Pollut.* 2019, 230, 164.

83. Singh, J.; Kalamdhad, A.S. Effects of heavy metals on soil, plants, human health and aquatic life. *Int. J. Res. Chem. Environ.* 2011, 1, 15–21.

84. Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. *Heliyon* 2020, 6, e04691.

85. Rothman, J.A.; Leger, L.; Kirkwood, J.S.; McFrederick, Q.S. Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. *Appl. Environ. Microbiol.* 2019, 85, e01411-19.

86. Hladun, K.R.; Di, N.; Liu, T.-X.; Trumble, J.T. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (*Apis mellifera* L.). *Environ. Toxicol. Chem.* 2016, 35, 322–329.

87. Gauthier, M.; Aras, P.; Jumarie, C.; Boily, M. Low dietary levels of Al, Pb and Cd may affect the non-enzymatic antioxidant capacity in caged honey bees (*Apis mellifera*). *Chemosphere* 2016, 144, 848–854.

88. Polykretis, P.; Delfino, G.; Petrocelli, I.; Cervo, R.; Tanteri, G.; Montori, G.; Perito, B.; Branca, J.J.V.; Morucci, G.; Gulisano, M. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (*Apis mellifera*). *Environ. Pollut.* 2016, 218, 826–834.

89. Dabour, K.; Al Naggar, Y.; Masry, S.; Naiem, E.; Giesy, J.P. Cellular alterations in midgut cells of honey bee workers (*Apis Mellifera* L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. *Sci. Total Environ.* 2019, 651, 1356–1367.

90. Wang, K. Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils. *Acta Biotechnol.* 2002, 22, 189–198.

91. Di, N.; Hladun, K.R.; Zhang, K.; Liu, T.-X.; Trumble, J.T. Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (*Apis mellifera* L.) larvae and foragers. *Chemosphere* 2016, 152, 530–538.

92. Conti, M.E.; Botrè, F. Honeybees and their products as potential bioindicators of heavy metals contamination. *Environ. Monit. Assess.* 2001, 69, 267–282.

93. Zarić, N.M.; Ilijević, K.; Stanisavljević, L.; Gržetić, I. Metal concentrations around thermal power plants, rural and urban areas using honeybees (*Apis mellifera* L.) as bioindicators. *Int. J. Environ. Sci. Technol.* 2016, 13, 413–422.

94. Di, N.; Zhang, K.; Hladun, K.R.; Rust, M.; Chen, Y.-F.; Zhu, Z.-Y.; Liu, T.-X.; Trumble, J.T. Joint effects of cadmium and copper on *Apis mellifera* foragers and larvae. *Comp. Biochem. Physiol. Part C* 2020, 237, 108839.

95. Hladun, K.R.; Smith, B.H.; Mustard, J.A.; Morton, R.R.; Trumble, J.T. Selenium toxicity to honey bee (*Apis mellifera* L.) pollinators: Effects on behaviors and survival. *PLoS ONE* 2012, 7, e34137.

96. Hladun, K.R.; Kaftanoglu, O.; Parker, D.R.; Tran, K.D.; Trumble, J.T. Effects of selenium on development, survival, and accumulation in the honeybee (*Apis mellifera* L.). *Environ. Toxicol. Chem.* 2013, 32, 2584–2592.

97. Søvik, E.; Perry, C.J.; LaMora, A.; Barron, A.B.; Ben-Shahar, Y. Negative impact of manganese on honeybee foraging. *Biol. Lett.* 2015, 11, 1–4.

98. Burden, C.M.; Morgan, M.O.; Hladun, K.R.; Amdam, G.V.; Trumble, J.J.; Smith, B.H. Acute sublethal exposure to toxic heavy metals alters honey bee (*Apis mellifera*) feeding behavior. *Sci. Rep.* 2019, 9, 4253.

99. Gizaw, G.; Kim, Y.; Moon, K.; Choi, J.B.; Kim, Y.H.; Park, J.K. Effect of environmental heavy metals on the expression of detoxification-related genes in honey bee *Apis mellifera*. *Apidologie* 2020, 51, 664–674.

100. AL Naggar, Y.; Dabour, K.; Masry, S.; Sadek, A.; Naiem, E.; Giesy, J.P. Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (*Apis mellifera* L.). *Environ. Sci. Pollut. Res.* 2020, 27, 19004–19015.

101. Jumarie, C.; Aras, P.; Boily, M. Mixtures of herbicides and metals affect the redox system of honey bees. *Chemosphere* 2017, 168, 163–170.

102. Kinoshita, H. Biosorption of heavy metals by lactic acid bacteria for detoxification. In Lactic Acid Bacteria: Methods and Protocols; Kanauchi, M., Ed.; Springer: New York, NY, USA, 2019; pp. 145–157. ISBN 978-1-4939-8907-2.

103. Bhakta, J.N.; Ohnishi, K.; Munekage, Y.; Iwasaki, K.; Wei, M.Q. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. *J. Appl. Microbiol.* 2012, 112, 1193–1206.

104. Mohammadi, M.; Shadnoush, M.; Sohrabvandi, S.; Yousefi, M.; Khorshidian, N.; Mortazavian, A.M. Probiotics as potential detoxification tools for mitigation of pesticides: A mini review. *Int. J. Food Sci. Technol.* 2021, 56, 2078–2087.

105. Zhai, Q.; Yin, R.; Yu, L.; Wang, G.; Tian, F.; Yu, R.; Zhao, J.; Liu, X.; Chen, Y.Q.; Zhang, H. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. *Food Control* 2015, 54, 23–30.

106. Lin, D.; Ji, R.; Wang, D.; Xiao, M.; Zhao, J.; Zou, J.; Li, Y.; Qin, T.; Xing, B.; Chen, Y.; et al. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. *Crit. Rev. Food Sci. Nutr.* 2019, 59, 395–410.

107. Ibrahim, F.; Halttunen, T.; Tahvonen, R.; Salminen, S. Probiotic bacteria as potential detoxification tools: Assessing their heavy metal binding isotherms. *Can. J. Microbiol.* 2006, 52, 877–885.

108. Nowak, A.; Szczuka, D.; Górczyńska, A.; Motyl, I.; Kręgiel, D. Characterization of *Apis mellifera* gastrointestinal microbiota and lactic acid bacteria for honeybee protection-A review. *Cells* 2021, 10, 701.

109. Abdel-Megeed, R.M. Probiotics: A promising generation of heavy metal detoxification. *Biol. Trace Elem. Res.* 2021, 199, 2406–2413.

110. Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. *Sci. Total Environ.* 2020, 742, 140429.

111. Tian, F.; Xiao, Y.; Li, X.; Zhai, Q.; Wang, G.; Zhang, Q.; Zhang, H.; Chen, W. Protective effects of *Lactobacillus plantarum* CCFM8246 against copper toxicity in mice. *PLoS ONE* 2015, 10, e0143318.

112. Kumar, N.; Kumar, V.; Panwar, R.; Ram, C. Efficacy of Indigenous probiotic *Lactobacillus* strains to reduce cadmium bioaccessibility—An in vitro digestion model. *Environ. Sci. Pollut. Res.* 2017, 24, 1241–1250.

113. George, F.; Mahieux, S.; Daniel, C.; Titécat, M.; Beauval, N.; Houcke, I.; Neut, C.; Allorge, D.; Borges, F.; Jan, G.; et al. Assessment of Pb(II), Cd(II), and Al(III) removal capacity of bacteria from food and gut ecological niches: Insights into biodiversity to limit intestinal biodisponibility of toxic metals. *Microorganisms* 2021, 9, 456.

114. Coryell, M.; McAlpine, M.; Pinkham, N.V.; McDermott, T.R.; Walk, S.T. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. *Nat. Commun.* 2018, 9, 5424.

115. Zhai, Q.; Wang, G.; Zhao, J.; Liu, X.; Tian, F.; Zhang, H.; Chen, W. Protective effects of *Lactobacillus Plantarum* CCFM8610 against acute cadmium toxicity in mice. *Appl. Environ. Microbiol.* 2013, 79, 1508–1515.

116. Zhai, Q.; Narbad, A.; Chen, W. Dietary strategies for the treatment of cadmium and lead toxicity. *Nutrients* 2015, 7, 552–571.

117. Zhai, Q.; Yu, L.; Li, T.; Zhu, J.; Zhang, C.; Zhao, J.; Zhang, H.; Chen, W. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of nile tilapia (*Oreochromis niloticus*) under waterborne cadmium exposure. *Antonie Van Leeuwenhoek* 2017, 110, 501–513.

118. Kumar, N.; Kumari, V.; Ram, C.; Thakur, K.; Tomar, S.K. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. *Appl. Microbiol. Biotechnol.* 2018, 102, 1599–1615.

119. Fisher II, A.; DeGrandi-Hoffman, G.; Smith, B.H.; Johnson, M.; Kaftanoglu, O.; Cogley, T.; Fewell, J.H.; Harrison, J.F. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (*Apis mellifera*). *Environ. Pollut.* 2021, 269, 115964.

120. Pettis, J.S.; vanEngelsdorp, D.; Johnson, J.; Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. *Naturwissenschaften* 2012, 99, 153–158.

121. Straub, L.; Williams, G.R.; Vidondo, B.; Khongphinitbunjong, K.; Retschnig, G.; Schneeberger, A.; Chantawannakul, P.; Dietemann, V.; Neumann, P. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. *Sci. Rep.* 2019, 9, 8159.

122. Tesovnik, T.; Zorc, M.; Ristanović, M.; Glavinić, U.; Stevanović, J.; Narat, M.; Stanimirović, Z. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema Ceranae infection in adult honey bees. *Environ. Pollut.* 2020, 256, 113443.

123. Glavinic, U.; Tesovnik, T.; Stevanovic, J.; Zorc, M.; Cizelj, I.; Stanimirovic, Z.; Narat, M. Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae. *PeerJ* 2019, 7, e6325.

124. Motta, E.V.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. *Proc. Natl. Acad. Sci. USA* 2018, 115, 10305–10310.

125. Motta, E.V.; Moran, N.A. Impact of glyphosate on the honey bee gut microbiota: Effects of intensity, duration, and timing of exposure. *Msystems* 2020, 5, e00268-20.

126. Ye, M.-H.; Fan, S.-H.; Li, X.-Y.; Tarequl, I.M.; Yan, C.-X.; Wei, W.-H.; Yang, S.-M.; Zhou, B. Microbiota dysbiosis in honeybee (*Apis mellifera* L.) larvae infected with brood diseases and foraging bees exposed to agrochemicals. *R. Soc. Open Sci.* 2021, 8, 201805.

127. Alaux, C.; Brunet, J.-L.; Dussaubat, C.; Mondet, F.; Tchamitchan, S.; Cousin, M.; Brillard, J.; Baldy, A.; Belzunces, L.P.; Le Conte, Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (*Apis mellifera*). *Environ. Microbiol.* 2010, 12, 774–782.

128. Vidau, C.; Diogon, M.; Aufauvre, J.; Fontbonne, R.; Viguès, B.; Brunet, J.-L.; Texier, C.; Biron, D.G.; Blot, N.; El Alaoui, H.; et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. *PLoS ONE* 2011, 6, e21550.

129. Claudianos, C.; Ranson, H.; Johnson, R.M.; Biswas, S.; Schuler, M.A.; Berenbaum, M.R.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. *Insect Mol. Biol.* 2006, 15, 615–636.

130. Wu, Y.; Zheng, Y.; Chen, Y.; Wang, S.; Chen, Y.; Hu, F.; Zheng, H. Honey bee (*Apis mellifera*) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. *Microb. Biotechnol.* 2020, 13, 1201–1212.

131. Peghaire, E.; Moné, A.; Delbac, F.; Debroas, D.; Chaucheyras-Durand, F.; El Alaoui, H. A pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. *Pestic. Biochem. Physiol.* 2020, 163, 138–146.

132. Islam, S.M.A.; Math, R.K.; Cho, K.M.; Lim, W.J.; Hong, S.Y.; Kim, J.M.; Yun, M.G.; Cho, J.J.; Yun, H.D. Organophosphorus hydrolase (OpdB) of *Lactobacillus brevis* WCP902 from kimchi is able to degrade organophosphorus pesticides. *J. Agric. Food Chem.* 2010, 58, 5380–5386.

133. Zhang, Y.-H.; Xu, D.; Liu, J.-Q.; Zhao, X.-H. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production. *Food Chem.* 2014, 164, 173–178.

134. Zhang, Y.-H.; Xu, D.; Zhao, X.-H.; Song, Y.; Liu, Y.-L.; Li, H.-N. Biodegradation of two organophosphorus pesticides in whole corn silage as affected by the cultured *Lactobacillus plantarum*. *3 Biotech* 2016, 6, 73.

135. Li, C.; Ma, Y.; Mi, Z.; Huo, R.; Zhou, T.; Hai, H.; Kwok, L.-Y.; Sun, Z.; Chen, Y.; Zhang, H. Screening for *Lactobacillus plantarum* strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation. *Front. Microbiol.* 2018, 9, 2048.

136. Trinder, M.; Bisanz, J.; Burton, J.; Reid, G. Probiotic lactobacilli: A potential prophylactic treatment for reducing pesticide absorption in humans and wildlife. *Benef. Microbes* 2015, 6, 841–847.

137. Trinder, M.; McDowell, T.W.; Daisley, B.A.; Ali, S.N.; Leong, H.S.; Sumarah, M.W.; Reid, G. Probiotic *Lactobacillus rhamnosus* reduces organophosphate pesticide absorption and toxicity to *Drosophila melanogaster*. *Appl. Environ. Microbiol.* 2016, 82, 6204–6213.

138. Bouhafs, L.; Moudilou, E.N.; Exbrayat, J.M.; Lahouel, M.; Idoui, T. Protective effects of probiotic *Lactobacillus plantarum* BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. *Ren. Fail.* 2015, 37, 1370–1378.

139. Bagherpour Shamloo, H.; Golkari, S.; Faghfoori, Z.; Movassaghpoor, A.; Lotfi, H.; Barzegari, A.; Yari Khosroushahi, A. *Lactobacillus casei* decreases organophosphorus pesticide diazinon cytotoxicity in human HUVEC cell line. *Adv. Pharm. Bull.* 2016, 6, 201–210.

140. Daisley, B.A.; Trinder, M.; McDowell, T.W.; Welle, H.; Dube, J.S.; Ali, S.N.; Leong, H.S.; Sumarah, M.W.; Reid, G. Neonicotinoid-induced pathogen susceptibility is mitigated by *Lactobacillus plantarum* immune stimulation in a *Drosophila melanogaster* model. *Sci. Rep.* 2017, 7, 1–13.

141. Pinto, G.; Castro, I.; Miguel, M.; Koblitz, M. Lactic acid bacteria-promising technology for organophosphate degradation in food: A pilot study. *LWT* 2019, 110, 353–359.

142. Yuan, S.; Li, C.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. *LWT* 2021, 147, 111672.

143. Chmiel, J.A.; Daisley, B.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. *Front. Ecol. Evol.* 2020, 8, 22.

144. Liu, Q.; Yu, Z.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. *Microb. Cell Factories* 2020, 19, 23.

145. Ren, C.; Zhang, Q.; de Haan, B.J.; Faas, M.M.; Zhang, H.; de Vos, P. Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are Toll like receptor 2 and protein kinase C dependent. *Food Funct.* 2020, 11, 1230–1234.

146. Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial extracellular polysaccharides in biofilm formation and function. *Microbiol. Spectr.* 2015, 3.

147. Lembre, P.; Lorentz, C.; Di Martino, P. Exopolysaccharides of the biofilm matrix: A complex biophysical world. *Complex World Polysacch.* 2012, 371–392.

148. Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. *Annu. Rev. Entomol.* 2015, 60, 17–34.

149. Zheng, H.; Perreau, J.; Powell, J.E.; Han, B.; Zhang, Z.; Kwong, W.K.; Tringe, S.G.; Moran, N.A. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. *Proc. Natl. Acad. Sci. USA* 2019, 116, 25909–25916.

150. Stanley, D.; Rejzek, M.; Naested, H.; Smedley, M.; Otero, S.; Fahy, B.; Thorpe, F.; Nash, R.J.; Harwood, W.; Svensson, B.; et al. The role of alpha-glucosidase in germinating barley grains. *Plant Physiol.* 2011, 155, 932–943.

151. Haydak, M.H. Honey bee nutrition. *Annu. Rev. Entomol.* 1970, 15, 143–156.

152. Johnson, R.M. Honey bee toxicology. *Annu. Rev. Entomol.* 2015, 60, 415–434.

153. Zheng, H.; Nishida, A.; Kwong, W.K.; Koch, H.; Engel, P.; Steele, M.I.; Moran, N.A. Metabolism of toxic sugars by strains of the bee gut symbiont *Gilliamella apicola*. *mBio* 2016, 7, e01326-16.

154. Iorizzo, M.; Lombardi, S.J.; Ganassi, S.; Testa, B.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antagonistic activity against *Ascospaera apis* and functional properties of *Lactobacillus kunkeei* strains. *Antibiotics* 2020, 9, 262.

155. Iorizzo, M.; Testa, B.; Lombardi, S.J.; Ganassi, S.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antimicrobial activity against *PaeniBacillus larvae* and functional properties of *Lactiplantibacillus plantarum* Strains: Potential benefits for honeybee health. *Antibiotics* 2020, 9, 442.

156. Lee, F.J.; Rusch, D.B.; Stewart, F.J.; Mattila, H.R.; Newton, I.L.G. Saccharide breakdown and fermentation by the honey bee gut microbiome. *Environ. Microbiol.* 2015, 17, 796–815.

157. Simone-Finstrom, M.; Li-Byarlay, H.; Huang, M.H.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. *Sci. Rep.* 2016, 6, 32023.

158. Li, Z.; Hou, M.; Qiu, Y.; Zhao, B.; Nie, H.; Su, S. Changes in antioxidant enzymes activity and metabolomic profiles in the guts of honey bee (*Apis mellifera*) larvae infected with *Ascospaera apis*. *Insects* 2020, 11, 419.

159. OLGUN, T.; DAYIOĞLU, M.; TAŞKIRAN, N.Ö. Pesticide and pathogen induced oxidative stress in honey bees (*Apis mellifera* L.). *Mellifera* 2020, 20, 32–52.

160. Paris, L.; Roussel, M.; Pereira, B.; Delbac, F.; Diogon, M. Disruption of oxidative balance in the gut of the western honeybee *Apis mellifera* exposed to the intracellular parasite *Nosema ceranae* and to the insecticide fipronil. *Microb. Biotechnol.* 2017, 10, 1702–1717.

161. Weirich, G.F.; Collins, A.M.; Williams, V.P. Antioxidant enzymes in the honey bee, *Apis mellifera*. *Apidologie* 2002, 33, 3–14.

162. Nikolić, T.V.; Purać, J.; Orčić, S.; Kojić, D.; Vujanović, D.; Stanimirović, Z.; Gržetić, I.; Ilijević, K.; Šikoparija, B.; Blagojević, D.P. Environmental effects on superoxide dismutase and catalase activity and expression in honey bee. *Arch. Insect Biochem. Physiol.* 2015, 90, 181–194.

163. Collins, A.M.; Williams, V.; Evans, J.D. Sperm storage and antioxidative enzyme expression in the honey bee, *Apis mellifera*. *Insect Mol. Biol.* 2004, 13, 141–146.

164. Balieira, K.V.B.; Mazzo, M.; Bizerra, P.F.V.; de Guimarães, A.R.J.S.; Nicodemo, D.; Mingatto, F.E. Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. *Apidologie* 2018, 49, 562–572.

165. Belsky, J.; Joshi, N.K. Impact of biotic and abiotic stressors on managed and feral bees. *Insects* 2019, 10, 233.

166. Drossart, M.; Gérard, M. Beyond the decline of wild bees: Optimizing conservation measures and bringing together the actors. *Insects* 2020, 11, 649.

167. Li, X.; Ma, W.; Shen, J.; Long, D.; Feng, Y.; Su, W.; Xu, K.; Du, Y.; Jiang, Y. Tolerance and response of two honeybee species *Apis cerana* and *Apis mellifera* to high temperature and relative humidity. *PLoS ONE* 2019, 14, e0217921.

168. Mucci, C.A.; Ramirez, L.; Giffoni, R.S.; Lamattina, L. Cold stress induces specific antioxidant responses in honey bee brood. *Apidologie* 2021, 52, 596–607.

169. Dussaubat, C.; Brunet, J.-L.; Higes, M.; Colbourne, J.K.; Lopez, J.; Choi, J.-H.; Martín-Hernández, R.; Botías, C.; Cousin, M.; McDonnell, C.; et al. Gut pathology and responses to the microsporidium *Nosema ceranae* in the honey bee *Apis mellifera*. *PLoS ONE* 2012, 7, e37017.

170. Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. *Gut Microbes* 2020, 12, 1801944.

171. Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. *J. Agric. Food Chem.* 2015, 63, 3615–3626.

172. Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two antioxidative lactobacilli strains as promising probiotics. *Int. J. Food Microbiol.* 2002, 72, 215–224.

173. Amaretti, A.; Di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. *Appl. Microbiol. Biotechnol.* 2013, 97, 809–817.

174. Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. *Nutrients* 2017, 9, 521.

175. Nowak, A.; Paliwoda, A.; Błasiak, J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of *Lactobacillus* and *Bifidobacterium* strains: A review of mechanisms and therapeutic perspectives. *Crit. Rev. Food Sci. Nutr.* 2019, 59, 3456–3467.

Retrieved from <https://encyclopedia.pub/entry/history/show/52448>