Laser-Based Powder Bed Fusion

Subjects: Engineering, Manufacturing Contributor: Nader Asnafi

Laser-based powder Bed Fusion (L-PBF), formerly SLM, is one of the seven Additive Manufacturing basic process categories in the new standards.

rapid tooling	additive manufacturin	ng (AM) las	laser-based powder bed fusion (L-PBF)				
production tools	cold working	hot working	injection molding				

1. Introduction

During the past 15 years, layered manufacturing has been subject to further research studies, standardization and industrialization. According to the developed standards, the technology is named Additive Manufacturing (AM). Laser-based powder Bed Fusion (L-PBF), formerly SLM, is one of the seven AM basic process categories in the new standards ^{[1][2][3][4]}. For a detailed description of L-PBF, see ^{[5][6][7][8][9]}.

Table 1 displays the features of the current (2020) machines for AM by L-PBF. This table, which is based on the machine makers specifications, shows that the maximum object size that can be 3D-printed today is $600 \times 600 \times 600 \text{ mm}^3$ (although the largest height is 850 mm in one of the other machines). This size has more than doubled compared to that in the 1995 machine for selective laser sintering. In addition to higher laser power, some of the current machines have more than one laser and therefore a much higher productivity.

Due to the complexity of L-PBF, the manufacturers of metal AM systems have developed sets of optimized processing conditions for some existing powder metals. The machine manufacturer sets the process parameters for one or some specific powder metals as the default values for additive manufacturing based on the customer preferences before machine delivery and installation, Table 2. The number of these powder metals is much larger than those in 1995. However, this number is still very small, compared to the number of existing materials made and used conventionally.

Table 1. The features of the current L-PBF machines [10][11][12][13][14][15][16].

Manufacturer	Model	Number and Type of Lasers	Laser Power (per Laser) (W)	Build Volume (I × w × h) (mm ³)	Build Rate (cm ³ /hr)	Layer Thickness (µm)	Scan Speed (m/s)
	DMP Factory 500 Printer Module	3 fiber	500	500 × 500 × 500 ¹	-	2–200, Typical: 30, 60 & 90	-
	DMP Factory/Flex 350	1 fiber	500	275 × 275 × 420	-	5–200, Typical: 30, 60 & 90	-
3D Systems	DMP Flex 100	1 fiber	100	100 × 100 × 90	-	10–100	-
	ProX DMP 300	1 fiber	500	250 × 250 × 330	-	10–100, preset: 40	-
	ProX DMP 200	1 fiber	300	140 × 140 × 115	-	10–100, preset: 30	-
Additive Industries	MetalFAB1	1 to 4 Yb fiber	500	420 × 420 × 400	-	20–100	-
	X Line 2000R	2 (cw) fibre	1000	800 × 400 × 500	-	-	-
Concept Laser	M Line Factory	4 fiber	1000	500 × 500 × 400	-	-	-
	M2 Multilaser	2 (cw) fiber	400	250 × 250 × 350	-	-	-
EOS	EOS M 400-4	4 Yb-fiber	400	400 × 400 × 400 ¹	100	80	7
	EOS M 400	1 Yb-fiber	400	400 × 400 × 400 ¹	50	-	7
	EOS M 300-4	4 Yb-fiber	400	300 × 300 ×	10	-	7

Manufacturer	Model	Number and Type of Lasers	Laser Power (per Laser) (W)	Build Volume (I × w × h) (mm ³)	Build Rate (cm ³ /hr)	Layer Thickness (µm)	Scan Speed (m/s)
				400			
	EOS M 290	1 Yb-fiber	400	250 × 250 × 325 ¹	-	-	7
References	;			f100 ×			_
1. Sprinkle, T.	EOS M 100 The 5 Most Impo	1 Yb-fiber ortant Standards	200 <u>s in Additiv</u>	95 ^{1&2} ve Manufa	- cturing. AS	- TM Standardi	7 zation
News. 11 M	ay 2020. Availat	ole online: (acce	essed on 2	25 Noovemb	er 2020).		
2. ISO. Interna	tional Standard	12 ISO 52900, 201	1000 .6—Additi	600 × ve manufa	1000 cturing—G	eneral princip	- les—
- Terminology	(ISO/ASTM 529	900, 2015, IDT) ;	; ISO: Gei	neva, Switz 500 ×	zerland, 20	16 .	
3. ISO. Interna	tionasi Strandard	ISO 17296-2, 2 categories and	016-Add 700	litivesmanu	$facturing_{171}$	-Genzeradoprino	;iple <u>s</u> ⊖-
Switzerland	2016.		ICCUSIOCE		50-2, 2015 _.	, 130. Ochev	α,
4. Ålgårdh, J.; Solutions for Additive	Strondl, A., Karl Manufacturing o	sson, IBG fiber f Metals; Repor	S.; ⁷⁰⁰ shi, t 2016-03	500 × S.; ²⁸⁰ Åhqers 365 898—State	Up to sson <u>1</u> ,7 <u>1</u> .; Å(e-of-the-Art	gren, ^{29–} 25 —Version 2.1	of-th <mark>e</mark> -Art ; Swedish
Arena for Ac	ditive Manufact	uring of Metals:	Sta o kholr	n, Sweden	, 2017.		
5. Criales, L.E.	; Arısoy, Y.M.; La	1, 2, 3 or ane, B _{du} aloylan	700, or , S⊱oD&nr	nez ^{280,×} Öz 365'1	Up to zel, <u>Tı</u> şase	r po %del⁰bed	fusion of
nickel alloy	625, Experiment	al investigations	s of effect	s of proces	s paramet	ers on melt po	ol size
and snape v	with spatter analy $M^{\mathbb{B}_{125}}$	/SIS. INT. J. MAC	n. 1001 Ma	125 × 125 ×	121, 22–3 Up to	0. · 20 75	10
6. Schwarze, E). Auswirktingen schaften: Anwei	der Zentrum A	orheizung	aut die îthe 125 ¹ W/B: Münc	ermoggecha	anischen ³	IO
7. Over, C. Ge mit "Selectiv	nerative Fertigui RenAM 500Q/S re Laser Melting'	ng voorBauteile '; ShakeerAach	n aus Wei 500 en, Germa	rkzęugstah 250 × any, ₃ 2003.	150	V5-1 und Tita 20–100	n TiAl6V4 10
8. Niendorf, T.;	Leuders, S.; Rie	emer, A.; Richa	rd, H.A.; T	röster, Ţ.; S	Schwarze,	D. Highly Anis	sotropic
Steel Proces	sserelebyanSelecontiv	e Lasen Melting	. Metall. N	250 × /ate <u>15</u> 7kan	s. B ^{J2} 093, 150	44B207960796	õ. <u>1</u> 0
9. Langefeld, E	8.; Moehrle, M.;	Balzer, C.; Schi	ldbach, P.	Advancen	nents in Me	etal 3D Printin	g
Beyond Pov Munich, Ger	vder Bed—Addit many,2018.	ive Manufacturi 1 Yb-fiber	ng on the 500	Bri 2 k00≸ In 250 × 350 ¹	dustrializat Up to 150	ion; Roland B 20–100	erger: 10
10. 3D Systems	, Printers and M	aterials Specific	cations. Av	vailable on	line: (acces	ssed on 27 No	vember
2020).	AM 400	1	400	250 × 250 × 300 ¹	-	-	-

11. Additive Industries, Printers and Materials SpeaseationsBailalable online: (accesse November 2020). Number Power Volume Build Laye Manufacturer Model and Type of (per (I × w × Rate Thickne 12. Concept Laser, Printers and Materasespecifications. Available of the date and the second	d on 27 r Scan ess Speed h 27 (m/s)
November 2020). 13. EOS (Electro Optional 250 stems), Printers and Materials Specifications. Available onli 400 300 ¹	ne: (accessed
14. SLM Solutions, Printers and Materials Specifications. Av ailable online: (accessed or TruPrint 10000 Atterials Specifications. Av ailable online: (accessed or 100 ^{1&2} 10 ^{2–18} November 2020).) 27 _
15. Renishaw, Printers and Materials Specifications Ovailable Online: (accessed 020270 2020). Trumpf	Jovembe <u>r</u>
16. Trumpf, Printer s, and Mator ials Sperifications. Available of the cacessed on 27 Ng	gember 2020).
1 <mark>7. Krish, S. A practical generative design method. Comput. Aided Des. 2011, 43, 88–1</mark> f300 ×	00 .
18. Briard, T.; Segonds, F., Zamariola, N. G-DfAM: A methodological proposal of general additive manufacturing in the automotive industry. Int. J. Interact. Des. Manuf. 2020	0. Itive design for , 14, 875–886.

¹ Height includes the thickness of the substrate/building plate.
² Diameter × height.
19. Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2004.

^{20.} Liu X. Yi W.J. Li O.S. Shen P.S. Genetic evolutionary structural optimization installation and the current machines P.S. Bernachines can be set in for upon installation optimization and the set in for upon installation optimization and the set in for upon installation optimization of the set in for upon installation optimization optimiza

	Manu- Powder Metals Based on									
2	facturer	Model	Al	Со	Cu	Fe	Ni	Ti	W	lem.
2	3D Systems	DMP Factory 500 Printer Module		By reque	st		Nickel alloys	By reque	est	noving 2016,
2		DMP Factory/Flex 350	AlSi7Mg0.6, AlSi10Mg	CoCrF75	-	Maraging Steel, 17-4PH, 316L	Ni625, Ni718	Ti Gr1, Ti Gr5, Ti Gr23	-	วt of เร. B
2		DMP Flex 100	-	CoCr	-	17-4PH, 316L	-	-	-	
		ProX DMP 300	AlSi12	CoCr	-	Maraging steel, 17- 4PH	-	-	-	r Metal
2		ProX DMP 200	AlSi12	CoCr	-	Maraging steel, 17-	-	-	-	2020,
2										litive

Manufacturing. J. Mech. Des. 2017, 139, 100906.

2	Manu-	Madal	Powder Metals Based on							
	facturer	Model	AI	Со	Cu	Fe	Ni	Ti	W	
28	3. Tomiyaı					4PH, 316 L				_rial
1	Additive Industries	MetalFAB1	AlSi10Mg, ScalmAlloy©	-	-	Tool steel 1.2709, 316L	IN718	Ti6Al4V	-	duc 201
		X Line 2000R	AlSi10Mg— Balanced & Productivity	-	-	-	Nickel 718	Ti6AL4V Grade 23	-	zing
	Concept Laser	M Line Factory	A205	CoCrMo	-	-	Nickel 718 CL	-	-	–55 ble
3		M2 Multilaser	AlSi10Mg, AlSi7Mg	CoCrMo	-	Maraging M300, 316L, 17-4PH	Nickel 625, Nickel 718	Ti6AL4V Grade 23	-	 :
		EOS M 400- 4	AlSi10Mg	-	-	MS1, 316L	HX, IN718	Ti64, TiCP Grade 2	-	r-
3		EOS M 400	AlSi10Mg	-	-	MS1	IN718	Ti64, Ti64ELI	-	n of
	EOS	EOS M 300- 4	AlSi10Mg	-	-	MS1	IN718	Ti64	-	เทเตล
		EOS M 290	AlSi10Mg	MP1	-	MS1, CX, PH1, 17-4PH, 316L	HX, IN625, IN718	Ti64, Ti64ELI, TiCP Grade 2	-	
		EOS M 100	-	SP2	-	316L	-	Ti64	W1	_
	SLM Solutions	LM SLM [®] NXG ALSi10Mg utions XII 600 (No No		No limitations		IN718 (No limit.)	No limitat	ions		
		SLM [®] 800	AlSi10Mg, AlSi7Mg0.6,	CoCr28Mo6, SLM [®]	CuSn10, CuNi2SiCr	Maraging 1.2709,	HX, IN625,	Ti6Al4V ELI	-	
		SLM [®] 500	AISIYEUJ	weaiDent		(1.4404), 15-5PH	IN939	23), TA15,		
		SLM [®] 280				(1.4545), 17-4PH (1.4542),		(Grade 2)		

Manu-	Model	Powder Metals Based on							
facturer	WOUEI	AI	Со	Cu	Fe	Ni	Ti	W	
	SLM [®] 125				H13 (1.2344), Invar 36 [®]				
	RenAM 500Q/S								
	RenAM 500E				Maraging	INI625			
Renishaw	RenAM 500M	AlSi10Mg	CoCr	-	M300, 316L	IN718	Ti6Al4ELI	-	
	AM 400								
	AM 250								
	TruPrint 1000	Yes to all except W + precious metal alloys + amorphous metals							
Trumpf	TruPrint 2000 Yes to all except Cu and W + amorphous metals								
папр	TruPrint 3000		Yes	s to all except	Co, Cu and V	V			
	TruPrint 5000		Yes	s to all except	Co, Cu and V	V			

2. Tool Design for Metal Additive Manufacturing by L-PBF

Additive manufacturing provides significantly larger design freedom (compared to conventional manufacturing), the benefits of which can be maximized by the emerging computer-aided design (CAD) technologies like generative design (GD). It is now possible to:

(1) Generate a wide range of design alternatives by artificial intelligence-based algorithms (GD software) after setting the part/object design space, constraints, criteria and objectives. The designer reviews the different design options and chooses the best-suited for the application ^{[17][18]}.

(2) Topology optimize the selected design alternative, the purpose of which is to remove unnecessary material while meeting (or exceeding) the performance criteria. The goal is to optimize a part properly (weight, stiffness, frequency ...) while respecting a certain set of constraints. The topology optimization process uses various mathematical algorithms and methods (each having several versions) ^{[19][20][21][22]}.

(3) Optimize the internal lattice and surface structure of the topology optimized object by creating an internal mesh while meeting (or exceeding) the performance criteria ^{[23][24][25][26]}.

(4) Produce this complex object by L-PBF (and post-processing).

During the past two decades, different new design methodologies have emerged, among them the Design for X (DfX). X represents a particular perspective to improve during the product design as well as the design process ^[27] ^[28]. DfX applied to the Additive Manufacturing process is named DfAM. It aims at using the full potential of the AM technologies for design, for which there are two methods ^{[18][29][30]}.

A new detailed DfAM process has been proposed including the available design support (methods, design rules, guidelines and software tools), the tools and methods that are best suited at different stages of the design process are specified, and the possibility to achieve a more automated DfAM is indicated ^[31].

As far as the L-PBF process design (i.e., the preparation of the L-PBF process) is concerned, the part orientation, support structures, overhangs and part supporting angles, channels and holes, wall thickness, tolerances and offsets are addressed in ^{[32][33][34]}. VDI 3405 Part 2, ^[32], addresses the qualification, quality assurance and post processing. The procedure described in this standard is applied to DIN 1.2709 in a VDI inter-laboratory test. The obtained properties in this inter-laboratory test are accounted for in ^[32].

The angle between the building platform and the building direction is also of great significance for the properties of the as-built object. In other words, the properties of the as-built object are anisotropic due to the layered manufacturing, the loading direction etc. Table 3 and Figure 1 display 7 different configurations, in which tensile specimens in 316L (1.4404) were built with an oversize of 0.4 mm in width and thickness. After milling to final shape, the specimens were tested. Table 4 displays the tensile properties of these specimens. The maximum strength is obtained at a 45° layer versus loading offset ^[35].

Figure 1. The tensile samples in 1.4404 (316L) on the building platform: overview of the positioning, building angles and arrangement (configurations). See also Table 3 and Table 4. The figure is from ^[35].

Config	Polar Angle Φ; α _{XY} (°)	Azimuth Angle Θ; α _X (°)	Total Runtime (h)
(a)	0	0	-
(b)	0	90	39.5
(C)	15	0	-
(d)	45	0	-
(e)	75	0	86.5
(f)	90	0	-
(g)	90	90	-

Table 3. The tested configurations. See also Figure 1 and Table 4. The table is from [35].

Table 4. The tensile properties of 1.4404 (316L) in different building configurations. See also Table 3 and Figure 1. The specimens were built with an oversize of 0.4 mm in width and thickness and milled to final shape before tensile testing. The table is from ^[35].

	Young's M	Modulus	Yield St	rength	Ultimate	Tensile	Elonga	tion at	Poisson	s Ratio
Config.	<i>E</i> (G	Pa)	R _{p0.2} (MPa)	Strength F	R _m (MPa)	Failure	At (%)	ע (-)
	Average	STDEV	Average	STDEV	Average	STDEV	Average	STDEV	Average	STDEV
(a)	151.01	25.56	516.51	7.16	634.43	7.39	33.24	0.57	0.444	0.031
(b)	207.57	24.22	539.47	3.29	643.67	3.25	42.74	0.82	0.155	0.014
(C)	147.87	23.59	501.32	7.70	624.65	4.36	34.09	1.12	0.479	0.058
(d)	227.35	25.12	589.89	11.86	698.98	23.65	32.56	10.17	0.203	0.024
(e)	151.43	18.80	485.65	11.93	571.23	18.63	22.84	7.27	0.558	0.020
(f)	137.78	14.25	438.60	9.69	511.99	17.95	11.76	5.38	0.453	0.005
(g)	137.83	16.25	457.21	17.29	530.22	8.09	17.46	4.42	0.170	0.085

Design demands knowledge of the precise material properties. These properties are anisotropic and the component orientation on the build platform needs therefore to be considered ^[35]. (Post L-PBF heat treatment affects also these properties. See the properties of 316L (1.4404) before and after heat treatment)

It is possible to achieve $\pm 0.2\%$ in tolerance, with the minimal value being 0.2 mm. It is also possible to achieve a wall thickness of 0.5 mm. However, the wall shape is dependent upon the orientation, its height (in relation to the thickness), and the possibility to have support if needed. As far as gaps (between walls or solid portions) are concerned, the minimum gap width should be larger than at least the melt pool width. It is also important to add an allowance of 0.3–0.5 mm to the locations and surfaces that require post-processing by machining to reach the required tolerance and surface roughness ^{[24][32]}.