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A DDE is a single-variable differential equation, usually called time, in which the derivative of the solution at a certain time

is given in terms of the values of the solution at earlier times. Moreover, if the highest-order derivative of the solution

appears both with and without delay, then the DDE is called of the neutral type. The neutral DDEs have many interesting

applications in various branches of applied science, as these equations appear in the modeling of many technological

phenomena. The problem of studying the oscillatory and nonoscillatory properties of DDEs has been a very active area of

research in the past few decades.
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1. Introduction

Consider the 2nd-order delay differential equation (DDE) of the neutral type:

(1)

where  and  . In this entry, we obtain new sufficient criteria for the oscillation of

solutions of (1) under the following hypotheses:

(A1)  is a ratio of odd integers;

(A2)  for    a constant (this constant plays an important role in the

results), and  does not vanish identically on any half-line  with 

(A3)     and  for 

By a proper solution of (1), we mean a  with  and

 for  and u satisfies (1) on  . A solution u of (1) is called nonoscillatory if

it is eventually positive or eventually negative; otherwise, it is called oscillatory.

The oscillatory properties of solutions of second-order neutral DDE (1) in the noncanonical case, that is:

(2)

where

2. Oscillatory Properties of Noncanonical Neutral DDEs of Second-Order

We begin with the following notations:  is the set of all eventually positive solutions of (1),  ,

Lemma 1. Assume that  and there exists a   such that:

t ∈ [t0, ∞) v(t) := u(t) + a1(t)u(g0(t))

β ≥ 1

ai ∈ C([t0, ∞), [0, ∞)) i = 0, 1, 2, a0(t) > 0 a1 ≤ c0

a2 [t*, ∞) t* ∈ [t0, ∞);

gj ∈ C([t0, ∞),R) gj(t) ≤ t g′
0(t) ≥ g

*
0 > 0, g0 ∘ g1 = g1 ∘ g0 limt→∞ gj(t) = ∞ j = 0, 1

u ∈ C 1([t0, ∞)) a0 ⋅ (v′)β ∈ C 1([t0, ∞))

sup {|u(t)| : t ≥ t*} > 0, t* ∈ [t0, ∞), [t0, ∞)

U + V (t) := a
1/β

0 (t)v′(t)

v ∈ U + δ0 ∈ (0, 1)



(3)

Then, v eventually satisfies:

and:

Proof.  Let  . Then, we have that  , and  are positive for  , for some  . Therefore,

it follows from (1) that:

Using (1) and Lemma 1 in , we see that:

and so:

(4)

Integrating this inequality from  to t and using the fact   , we find:

(5)

 Assume the contrary, that  for  . Thus, from (5), we have:

This, from (3), implies:

Letting  and taking the fact that  as  ,  we obtain  , which contradicts the positivity

of   .

Next, since v is positive decreasing, we have that  . Assume the contrary, that  . Then,

 for all  , for some  . Thus, from (3) and (5), we have:

u ∈ U + u(g0(t)) u(g1(t)) t ≥ t1 t1 ≥ t0

[1]

t1 (V β(t))
′

≤ 0

(C1) v′(t) > 0 t ≥ t1

t → ∞ η(t) → 0 t → ∞ V β(t) → −∞

V (t)

limt→∞ v(t) = v0 ≥ 0 v0 > 0

v(t) ≥ v0 t ≥ t2 t2 ≥ t1



or

and so,

(6)

Using the fact that  , we obtain that  for all  . Hence, by integrating (6) from

 to t, we obtain:

Letting  and taking the fact that  as  , we obtain  , which contradicts the positivity of

 . Therefore,  .

 Since  is decreasing, we obtain:

and:

(7)

Then,  .

 From (7), we obtain:

Thus, from (4) and the fact   , we obtain:

and then:

η′(t) < 0 η(t) < η′(t2) < η′(t1) t ≥ t2 ≥ t1

t1

t → ∞ η(t) → 0 t → ∞ v(t) → −∞

v(t) v0 = 0

(C2) V (t)

(v/η)′ ≥ 0

(C3)

V ′(t) ≤ 0



The proof is complete.

Lemma 2. Assume that  and there exists a  such that (3) holds. Then:

Proof.  Let  . From Lemma 1, we have that  –  hold for  .

Integrating  from  to t, we arrive at:

From (3), we obtain:

and:

(8)

Using  , we eventually have:

Hence, (8) becomes:

This implies that  is a decreasing function.

The proof is complete.

2.2. Oscillation Theorems

In the next theorem, by using the principle of comparison with an equation of the first-order, we obtain a new criterion for

the oscillation of (1).

Theorem 6. Assume that  and there exists a  such that (3) holds. If the delay differential

equation:

(9)

is oscillatory, then every solution of (1) is oscillatory.

Proof.  Assume the contrary, that (1) has a solution  . Then, we have that  and  are positive for

 , for some  . From Lemmas 1 and 2, we have that  –  hold for  .

Next, we define:

From  ,  for  . Thus,

Thus, it follows from  that:

u ∈ U + δ0 ∈ (0, 1)

u ∈ U + (C1) (C3) t ≥ t1

(C3) t1

(C1)

v/ηγ0δ0

g1(t) ≤ g0(t) δ0 ∈ (0, 1)

u ∈ U + u(t), u(g1(t))

t ≥ t1 t1 ≥ t0 (C1) (C4) t ≥ t1

(C1) w(t) > 0 t ≥ t1

(C3)



(10)

Using  , we obtain that:

which with (10) gives:

(11)

Now, we set:

Then,  , and so,  (11) becomes:

which has a positive solution. In view of  (Theorem 1), (9) also has a positive solution, which is a contradiction.

The proof is complete.

Corollary 1. Assume that  and there exists a  such that (3) holds. If:

(12)

then every solution of (1) is oscillatory.

Proof.  It follows from Theorem 2 in  that the condition (12) implies the oscillation of (9).

Next, by introducing two Riccati substitution, we obtain a new oscillation criterion for (1).

Theorem 7. Assume that  and there exists a  such that (3) holds. If:

(13)

then every solution of (1) is oscillatory.

Proof.  Assume the contrary, that (1) has a solution  . Then, we have that  and  are positive for

 , for some  . From Lemmas 1 and 2, we have that  –  hold for  .

Now, we define the functions:

(1)

and:

(2)

(C4)

W(t) ≤ c̃0w(g0(t))

[2]

g1(t) ≤ g0(t) δ0 ∈ (0, 1)

[3]

g1(t) ≤ g0(t) δ0 ∈ (0, 1)

u ∈ U + u(t), u(g1(t))

t ≥ t1 t1 ≥ t0 (C1) (C4) t ≥ t1

Θ1 :=
V

v
,

Θ2 :=
V ∘ g0

v ∘ g0
.



Then,  and  are negative for  . From  , we obtain:

Hence,

and:

Then:

(14)

and:

(15)

Combining (14) and (15), we obtain:

Integrating this inequality from   to t, we have:

Θ1 Θ2 t ≥ t1 (C4)

t1



From  we obtain  . Therefore,

where:

Since  and  , we find:

Taking  and using (13), we arrive at a contradiction.

The proof is complete.

2.3. Applications and Discussion

Remark 1. It is easy to see that the previous works that dealt with the noncanonical case required either  or

 . Since η is decreasing and  , we have that  . Then, the results of

these works only apply when  .

Example 1. Consider the DDE:

(16)

where   and  . By choosing  the condition (12) becomes:

(17)

Using Corollary 1, Equation (16) is oscillatory if (17) holds.

Remark 2. To apply Theorems 3 and 4 on (16), we must stipulate that  . Let a special case of (16), namely,

A simple computation shows that (16) is oscillatory if:

(18)

or:

(19)

or:

(20)

Consider the following most specific special case:

(C2), η(t)Θ1(t) ≥ −1

η′(t) < 0 a′(t) ≥ 0

limsupt→∞

a1(t) < 1

a1(t) < η(t)/η(g0(t)) g0(t) ≤ t η(g0(t)) ≥ η(t)

a1(t) ∈ (0, 1)

t ≥ 1, a
*
1 > 0, κ < λ ∈ (0, 1) δ0 = a

*
2,

a
*
1 < 1



(21)

Note that (18)–(20) fail to apply. However, (17) reduces to:

which ensures the oscillation of (21).
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