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Wastewater treatment plants (WWTPs) generate significant amounts of greenhouse gases, including carbon dioxide,

methane and nitrous oxide. Nitrous oxide (N O) is an important greenhouse gas with a global warming potential (GWP)

273 times that of carbon dioxide (CO ), contributing to ozone layer depletion and climate change. Therefore, even small

amounts of N O emissions can significantly contribute to total greenhouse gases (GHG) emissions. Thus, it can be

concluded that the minimization of N O emissions and the identification of the factors controlling these emissions

constitute a great challenge.
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1. Introduction

Wastewater treatment plants (WWTPs) generate significant amounts of greenhouse gases, including carbon dioxide,

methane and nitrous oxide . According to the IPCC 2023, the global anthropogenic emissions of greenhouse gases

(GHGs) were 59 GtCO -eq, about 12% (6.5 GtCO -eq) higher than in 2010 and 54% (21 GtCO -eq) higher than in 1990

. The contribution of each gas to the total GHG emissions varies: 79.4% for carbon dioxide, 11.5% for methane, and

6.2% for nitrous oxide, with the remainder consisting of fluorinated gases . Nitrous oxide (N O) is an important

greenhouse gas with a global warming potential (GWP) 273 times that of carbon dioxide (CO ) , contributing to ozone

layer depletion and climate change . Global N O emissions were 2.7 GtCO2-eq, according to the IPCC 2023 .

Therefore, even small amounts of N O emissions can significantly contribute to total GHG emissions. Thus, it can be

concluded that the minimization of N O emissions and the identification of the factors controlling these emissions

constitute a great challenge.

2. History

Human activities such as agriculture and fossil fuel combustion, along with microbial processes occurring in biological

wastewater treatment are the main sources of anthropogenic N O emissions . Wastewater treatment as a sector

contributes approximately 3% of the global anthropogenic N O emissions . This percentage has increased in

recent years . Yao et al., 2022 reported that wastewater treatment was the fourth-largest source of N O emissions

after agriculture, energy production, and other industrial production activities, accounting for 5.6% of total N O emissions.

N O emissions originating from sludge disposal and treatment are not included in those from the wastewater treatment

sector. The total amounts of N O produced from sludge incineration, reuse in cement, and composting are 645.0 kg

N O/tonne, 294 kg N O/tonne and 0.37 kg N O/tonne, respectively . N O emission from wastewater management

contributes 26% of the total GHGs originating from the water sector, which includes drinking water production, water

transport, wastewater and sludge treatment and discharge . Numerous studies have confirmed that in biological

wastewater treatment, the nitrification and denitrification processes occurring under aerobic and anaerobic/anoxic

conditions are generally responsible for N O emissions . Many researchers have investigated

the mechanisms of N O production in WWTPs . It is known that N O formation pathways

include hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification . The main

mechanism favoring N O production in WWTPs depends on the process configuration and operational parameters

[49,50]. Goreau et al., 1980 concluded that the denitrification pathway of AOB was responsible for N O emissions. In

order to reveal possible mechanisms of N O production, many factors affecting N O emissions have been reported: low

dissolved oxygen concentration in aerobic conditions or high dissolved oxygen concentration in anoxic conditions,

accumulation of nitrite, rapidly changing process conditions, pH, temperature or a low ratio of COD to nitrogen compounds

during heterotrophic denitrification .
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3. Influences

According to different N O production pathways, the main factors affecting N O emissions are the dissolved oxygen

concentration (DO), the nitrite accumulation, the rapidly changing process conditions (e.g., high ammonia concentration

and oxygen limitation), the substrate composition and COD/N ratio, the pH, and the temperature. The climatic zone, the

location, the performance, and the influent characteristics of WWTPs also influence N O emissions. These factors are

dependent on the various microorganism species (AOB, NOB, AOA), whereas the microorganisms present in each

process are dependent on the substrate and process conditions.

3.1 Dissolved Oxygen Concentration (DO)

The dissolved oxygen concentration is considered a very important parameter controlling N O emissions during

nitrification (nitration) or nitritation. Low DO concentrations during nitrification result in high N O emissions, which can be

attributed to nitrifier denitrification . Li et al., 2015 investigated the synergistic effect of DO and pH on

N O emissions in a pilot-scale SBR process and reported that when DO was decreased from 3 to 0.5 mg/L, more NO

was accumulated, resulting in N O production (nitrifier denitrification). Similar observations were made by Zheng et al.,

1994 reporting that at DO < 1 mg/L N O production increased, due to nitrifier denitrification. In addition to nitrifier

denitrification, the hydroxylamine oxidation pathway was found to contribute to N O emissions in the study of Peng et al.,

2014. They demonstrated that the specific N O production rate increased from 0 to 1.9 mgN O-N/h/grVSS when DO

concentration was increased from 0 to 3 mg/L . With an increase in DO from 0.2 to 3 mg/L, the contribution of nitrifier

denitrification by AOB decreased from 92% to 73%, accompanied by a corresponding increase in the contribution by the

hydroxylamine oxidation pathway . The transition from anoxic to aerobic conditions resulted in the accumulation of

hydroxylamine and the formation of N O through the hydroxylamine oxidation pathway . High N O production was

observed under an increased aeration rate in a partial nitritation anammox reactor . The stronger aeration,

accompanied by an increased DO, stimulates stripping, leading to an increased proportion of the produced N O leaving

via the gas phase . Dissolved oxygen affects N O production during denitrification by inhibiting the synthesis and

activity of nitrous oxide reductase, and its activity has been found to stop immediately when the denitrifying bacteria move

from an anaerobic to an aerobic environment . Nitrite reductase activity continues at a lower rate under the same

transition, so that nitrous oxide emissions will occur .

3.2 Nitrite Accumulation

Nitrites are formed by AOB ammonium oxidation and by the reduction of heterotrophic bacteria nitrates. NO plays a key

role in nitrous oxide production. NO accumulation increases nitrous oxide emissions during nitrification and

denitrification. During nitrification, increased nitrite concentrations can lead to increased nitrifier denitrification by AOB and

increased N O emissions . High nitrite concentrations and low DO concentrations are known

triggers for nitrite reductase and nitric oxide reductase expression in AOB, which favors N O production through the

nitrifier denitrification pathway . During nitritation–denitritation applying SBR process, increased nitrous oxide emissions

were observed at high NO concentrations and DO < 1.5 mg/L . This was related to a promoted expression of nitric

oxide reductase gene or increased activity of NO reductase with increasing substrate concentration . Thus, at lower

DO (<1.5 mg/L), AOB denitrification was possibly responsible for N O production during nitritation. In heterotrophic

denitrification, high NO concentrations inhibit complete denitrification, resulting in nitric oxide and nitrous oxide

accumulation and increased nitrous oxide emissions . Under elevated NO concentrations, NiR, NOR

and N OR compete for electrons . Limited generation of nitric oxide reductase under high concentrations of NO during

denitrification has also been observed, resulting in NO accumulation . This can further affect nitrous oxide emissions,

as nitric oxide inhibits the activity of the enzymes involved in the denitrification process.

3.3 Rapidly Changing Process Conditions

In many studies, elevated nitrous oxide emissions were reported when the process conditions were changed rapidly (e.g.,

high ammonia concentration and oxygen limitation) . Ammonia shock loads lead to incomplete nitrification, resulting

in decreased nitrogen removal efficiency, NO  accumulation and N O formation. Thus, the performance of the

wastewater treatment plant also influences N O production. Oxygen limitation during nitrification could result in NO

accumulation and N O formation (nitrifier denitrification pathway). Bacterial metabolism likely necessitates a period of

adjustment to adapt to shifts in process conditions, leading to significant peaks in nitrous oxide emissions. Variations in

bioreactors have also been observed, e.g., a decline in DO concentration owing to elevated influent loading or aeration

rate limitation , resulting in increased N O production through the nitrifier denitrification pathway. Furthermore, the

transition from anoxic conditions to aerobic conditions with the presence of accumulated NH resulted in N O formation,

suggesting that the hydroxylamine oxidation pathway is an important contributor in the formation of N O .
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3.4 Substrate Composition and COD/N Ratio

The influent characteristics of a WWTP affect nitrous oxide emissions. The composition of different organic substrates is a

major factor contributing to N O emissions. Limiting availability of biodegradable organic carbon hinders complete

denitrification, resulting in N O accumulation , whereas excess carbon decreases N O production. Influent nitrogen

plays an important role in N O emissions . Thus, the COD/N ratio is an important factor controlling N O production.

Several researchers have investigated the effect of organic substrates on N O emissions on the basis of experiments

conducted at lab-scale using methanol, sodium acetate and mannitol as carbon sources . In the study of Song et

al., 2015, lower N O emissions were observed in the case of acetate compared to those emitted when using methanol as

the carbon source. The N O emission factor was 2.3% of influent nitrogen for the methanol and 1.3% of influent nitrogen

for the acetate, which was attributed to the fact that the biomass became more abundant in bacteria capable of reducing

N O with acetate as carbon source . Conversely, in the study of Adouani et al., 2010, the results showed that the

highest N O and NO emissions were generated when using acetate as the carbon source, which was attributed to the

diversity of denitrifying bacteria and their distinct metabolic pathways towards the added carbon substrates. The use of

mannitol instead of sodium acetate as a carbon source resulted in lower N O conversion rates (21% for mannitol and 41%

for sodium acetate) . Microbial analysis showed that mannitol lowered the N OR enzyme inhibition caused by the high

nitrite concentration in the partial nitrification system, thus enhancing heterotrophic denitrification. The presence of trace

metals (e.g., Fe(II), Fe(III), Cu(II)) and other compounds in the substrate may affect N O emissions through abiotic

reactions . N O accumulation can be observed in the absence of sufficient Cu in natural waters or in the

formation of nonbioavailable complexes with copper . Increased N O emissions were observed during denitrification

when the availability of biodegradable organic carbon was limited . N OR is less competitive under limited COD,

leading to N O production . Schalk-Otte et al., 2000 conducted experiments in a pure culture, observing that when

the availability of organic carbon became limited, 32–64% of the nitrogen load was emitted as nitrous oxide . The

various denitrification enzymes (NaR, NiR, NOR and N OR) compete for electrons when conditions of limited carbon

sources are favored. NaR and NiR have relatively higher affinity for electrons than NOR and N OR , resulting in

incomplete denitrification and N O formation. Another cause for increased N O emissions under conditions in which

organic carbon is limited is the microbial consumption of internal storage compounds . Nitrous oxide production is

reduced when excess carbon is provided for the removal of electron competition . Regarding the effect of different

COD/N ratios (1.5, 2.5, 3.5 and 4.5) on N O emissions, it was shown that the highest N O production was obtained under

the lowest COD/N ratio in laboratory-scale experiments . Similar observations were made in the studies of Itokawa et

al., 2001 and Andalib et al., 2018, where the highest N O production was reported when the COD/N ratio was below 3.5

. Thus, it can be concluded that low COD/N ratios correspond to high nitrogen load in the influent, resulting in

elevated N O production. Moreover, according to Law et al., 2012a, for complete denitrification, a COD/N ratio above 4 is

required, with the optimal ratio ranging from 4 to 5 . In agreement with the above statements, Gruber et al., 2021

demonstrated a weak positive correlation between C/N ratio and the N O emission factor . However, Quan et al., 2012,

employing three lab-scale aerobic granular SBRs, reported that lowering the nitrogen loading rate or, equivalently, raising

the COD/N ratio did not hinder the heterotrophic denitrification process .

3.5 pH and Temperature

One of the major factors affecting nitrification in wastewater treatment is pH. Nitrification systems are sensitive to

variations in pH . Wastewater biological nitrification processes are accompanied by DO consumption and pH reduction.

Although the optimal pH range for complete nitrification varies between 7.5 and 8 , the optimum pH for AOB and

NOB growth ranges from 8.5 to 8.8 and from 8.3 to 9.3, respectively . Thus, the activity of AOB and NOB can be

affected by changes in pH , and pH can also cause changes in the concentrations of free ammonia (FA) and free

nitrous acid (FNA). High pH shifts the equilibrium to FA, which is the substrate of AOB , and is inhibitory to nitrite-

oxidizing bacteria (NOB) . The ranges of FA concentrations that begin to inhibit nitrifying organisms are: 10 to 150

mg/L for AOB and 0.1 to 1.0 mg/L for NOB . Low pH increases the FNA concentration, which inhibits both AOB and

NOB . The inhibition of both AOB and NOB was initiated at concentrations of FNA between 0.22 and 2.8 mg/L .

During nitrification, the highest N O production was observed at the lowest applied pH (pH = 6.0) . NOB are strongly

affected by low pH values (no activity was detected at pH =6.5) , thus resulting in the accumulation of nitrites. No

inhibition was observed at high pH values (the activity was nearly the same for the pH range 7.5–9.95) . In the partial

nitrification (nitritation) process at DO = 0.7 mg/L, accumulation of nitrites was observed at high pH (pH = 7.85) , thus

resulting in high  production.

During denitrification, N O formation was observed at pH below 6.8 . Similar observations were made by Hanaki et al.,

1992, showing that the maximum N O emissions occurred when pH decreased from 8 to 6.5. This was attributed to N O

reduction rate decreasing at low pH, resulting in N O accumulation . Wastewater temperature plays a significant role
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during nitrification. The mass transfer, chemical equilibrium and growth rate of both AOB and NOB are affected by

temperature , and it could consequently be a major factor influencing nitrous oxide emissions. The temperatures at

which the growth rates of AOB and NOB are maximized are 35 C and 38 C, respectively . Van Hulle et al., 2007

suggested that the optimal temperatures for partial nitrification range from 35 C to 45 C . However, only short-term

effects on temperature were studied. Prolonged exposure to temperatures higher than 40 C is likely to result in

deactivation . Hellinga et al., 1998 reported that at temperatures higher than 25 C, the AOB specific growth rate

increases and becomes higher than that of NOB. NOB can be washed out in activated sludge processes operating with

high temperatures (30–35 C), leading to the accumulation of nitrites and elevated N O emissions due to the nitrifier

denitrification pathway . It is known that denitrification rates increase with increasing temperature . It is also known

that increasing temperature decreases the solubility of N O.With a temperature increase from 25 C to 35 C, a reduction

in the solubility of nitrous oxide in water of 23% was observed . Thus, nitrous oxide solubility plays a key role in

controlling nitrous oxide emissions . A low nitrous oxide solubility at elevated temperature leads to more N O leaving

the liquid phase before complete denitrification can be accomplished. Increasing the temperature from 10 C to 20 C

leads to higher N O emissions (a 2.5-fold increase was measured in nitrous oxide emissions) . Poh et al., 2015

investigated the impact of temperature on nitrous oxide emissions during denitrification. The specific reduction rates of

nitrates, nitrites and nitrous oxide increased by 62%, 61% and 41%, respectively, when the temperature was increased

from 25 C to 35 C. At 35 C, although a higher N O reduction rate was observed, N O became less soluble in the mixed

liquor, meaning that stripping was occurring more intensively. Thus, the dissolved N O was found to decrease

continuously during the experiment because the stripping was occurring faster. As a result, although high temperatures

are employed to increase the denitrification kinetics, they are expected to produce more emissions in the end.
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