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Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and

the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline

proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential

stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model

organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and

germination extrapolated to B. thuringiensis. However, in the light of the findings concerning the role of the

sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory

strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and

success of B. thuringiensis in the environment and the insect host. 

spore-forming bacteria  Gram-positive bacillus  Bacillus thuringiensis

insecticidal crystal proteins

1. Introduction

The phylum Firmicutes (now referred to by a new, name, Bacillota) includes known spore-forming bacteria of the

genera Bacillus and Clostridium. The genus Bacillus includes to Bacillus cereus, Bacillus subtilis, Bacillus

anthracis, Bacillus megaterium, and Bacillus thuringiensis. The majority of these are soil bacilli and have relevance

at the level of the food industry, pathogenesis, biological weapons, and biotechnology (nanotechnology,

therapeutics) . Meanwhile, the members of the genus Clostridium, such as Clostridium perfringe,

Clostridium botulinum, and Clostridium tetanus mainly have a role in food spoilage, food-borne disease,

intoxication, gas gangrene, pseudomembranous colitis, botulism, human pathogenesis (toxin production), and in

the biotechnological industry (chemical products) .

A feature shared between the genera Bacillus and Clostridium is the sporulation, structure assembly, and

germination for survival and DNA protection . The manner in which they carry out these biological events at

the molecular level is the subject of the entry, addressing general knowledge of the soil bacterium Bacillus

thuringiensis and insight into the molecular programs that make this bacterium more than a successful insect

pathogen in the environment and in the host .

Sporulation in the phylum Firmicutes plays a fundamental role as a cytological and morphological process during

the life cycle. Genes and proteins constitute players in spore formation and germination .
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Currently, the high-throughput technologies, integrated as the omic technologies, should allow for deep insight into

the unveiling of the complex machinery of the sporulation and germination of spore-forming bacteria .

The genes and the proteins for each stage are conserved among species of Bacillus. However, in Clostridium spp.,

there are some differences due to the environmental conditions vs. the soil rhizosphere .

However, how do the spores permit the microorganism to survive and persist for long time periods? A cue is the

structural architecture of the spore. Recent electron cryotomography (ECT) permits three-dimensional (3D) study

reconstruction of the Gram-negative and Gram-positive bacterial cell walls. This analysis, in conjunction with

biochemical and genetic evidence, supports the hypothesis that sporulation could be the ancient biological

evolution process that gave rise to the second membrane in diderm cells (Gram-negative bacteria). The

interconversion of the thin and thick peptidoglycan layer facilitated this process.

The second membrane in diderm bacteria is richer in lipopolysaccharides (LPS) and outer proteins. In other words,

the chemical composition of the outer and inner membranes of the spore plays a role in resistance and protection

under harsh conditions. The dynamic of sporulating regulatory proteins, the morphogenetic coat, and other proteins

are involved in the early, middle, and late stages in sporulation or in spore biogenesis . On referring to Bacillus

thuringiensis (Bt) and its remarkable soil life, there are thousands of studies regarding its mechanism of action and

its biotechnological application as a bioinsecticide. However, Bt has a spectrum of action due greatly to the battery

of proteins produced (ICPs) at the onset of sporulation. Recent works have revealed by combining proteomics and

metabolomics that there is a metabolic regulation mechanism of sporulation and ICPs synthesis. Specifically, these

metabolic pathways are involved in the synthesis, energy storage, carbon supply, and nutrients (amino acids,

sugars), and these are under close regulation (transcriptional and translational) during sporulation and crystal

synthesis .

2. The Soil Spore-Forming Bacterium Bacillus thuringiensis

The identity of Bacillus thuringiensis relies on a set of pore-forming proteins, known as Cry and Cyt toxins, to kill

insect larvae. Therefore, Bt is considered an insect pathogen . B. thuringiensis belongs to the genus

Bacillus, a rod-shaped Gram-positive soil bacterium that contains genomic DNA and extrachromosomal DNA

(plasmids). Interestingly, many plasmids encode the delta-endotoxins or Cry proteins, a strategy of B. thuringiensis

to survive in the harsh environment of the soil’s rhizosphere and for insect and mammalian targeting .

Commitment in the life cycle of B. thuringiensis consists of a series of morphological and cytological changes that

end with spore formation and crystal production. This series includes gene expression and biochemical and genetic

programs .

The Plasmid-Encoded Bt Crystalline Proteins

The insecticidal delta-endotoxins of Bacillus thuringiensis or Cry (Crystalline) proteins have been the subject of

intense research during the last three or four decades . These crystals comprise an array of immature
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protoxins with a molecular weight of 130 kDa, encoded in large plasmids . To be active in the insect larvae

host, protoxins are first solubilized and then processed in the C-terminal region favored by the enzymatic action,

yielding a toxin with a molecular weight of 60–70 kDa . The 3D structure of several Cry toxins was elucidated

by X-ray resolution crystallography , including Cry1Ac , Cry2Aa , Cry3Aa , Cry3Ba , Cry4Aa , and

Cry4Ba . Moreover, based on sequence identity, it has been determined that the majority of the Cry toxins share

three-domain structures with five highly conserved blocks in domain I . Domain I is formed by a bundle of

seven alpha-helices, with one central helix surrounded by six other alpha-helices . The secondary structure of

the alpha helices of domain I resemble bacterial pore-forming proteins, such as bacterial colicin I.

3. The General Sporulation Mechanism in the Genus Bacillus

The challenge and the goal objective of sporulation in the genus Bacillus and in other spore-forming bacteria such

as Clostridium is DNA protection and survival . The latter process is accomplished by the Firmicutes

phylum, despite pressure selection, evolution, and diversity in the set of molecular components comprising the

program and that crosstalk 

One of these systems is the Rap-Phr quorum sensing system, which regulates different bacterial processes,

remarkably the commitment to sporulation in the Bacillus species . How do Rap proteins act

in sporulation? Rap proteins act as quorum sensors, forming a response regulator with a TPR (tetratricopeptide

repeat) domain, a hydrophobic pocket able to bind the signaling peptide, thus inducing a conformational change

and modulating regulator activities . Therefore, RAP proteins act on phosphatases, an intermediary

component of the sporulation phosphorelay system in Spo0F. Rap63 exhibited moderate activity during sporulation

and is inhibited by the Phr63 peptide . In Bacillus subtilis (frequently used as a model of the genus Bacillus),

the starting sporulation programs is characterized by the phosphorylation of the master regulator Spo0A 

. Across the genus Bacillus, the sporulation process is regulated by a cascade of sigma factors as

follows: sigma F (σF); sigma E (σE): sigma G (σG), and sigma K (σK). Sigma factor K (σ(K) is a sigma factor

conserved among the Bacillus genera, except in the genus Clostridium .

The sporulation program conserved among the members of the genus Bacillus comprises the following seven

cytological and morphological changes  (Figure 1A): Stage 0 to Stage I, Axial filamentation; Stage II, Polar

septum formation; Stage III, Forespore engulfment (ơ  ơ ); Stage IV to Stage V, Cortex and coat assembly, and

Stage VI to Stage VII, Spore maturation and mother-cell lysis. The morphological and cytological changes were

impaired in spoIID, spoIIM, and spoIIP mutants  and in the spoIIB–spoVG double mutant.

However, the deletion of the spoVS gene, controlled by ơ , permitted the spoIIB–spoVG double-mutant, to

complete engulfment . SpoVA proteins are involved in the uptake and release of nutrients from the core

during the uptake of Ca  dipicolinic acid. The lytic enzymes SleB and CwlJ, found in bacilli, hydrolyze the spore

cortex . The spore is formed by an assembly process that involves a four-layer coat. The coating proteins

described for Bacillus subtilis include cot, cot B, saf A, cot H, cot O, cot E, ger E, and cot E ger E  (Figure 1A).

Assembly starts from the external outermost amorphous (crust) layer, followed by the rodlet, the honeycomb, the
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fibrous, and the nanodot particle layers, and finally, the undercoat/basement layer. Interestingly, under the

exosporium of B. thuringiensis , a hexagonal honeycomb is exposed.[89][90][91][92][93]



Soil Bacterium Bacillus thuringiensis | Encyclopedia.pub

https://encyclopedia.pub/entry/44529 5/19



Soil Bacterium Bacillus thuringiensis | Encyclopedia.pub

https://encyclopedia.pub/entry/44529 6/19

Figure 1. (A) Sporulation, structure assembly, and germination in the genus Bacillus. Gram-positive spore-forming

bacteria, Bacillus and Clostridium, follow similar morphological and cytological processes. There are some

differences among members of the genus Clostridium. Sporulation program in the genus Bacillus is conserved.

The spore allows us to fight against the selection pressure in the different niches and ecosystems. Therefore, the

sporulation process is essential for resistance, survival, and success, and even to co-exist forever. Briefly, the

sporulation process is a mechanism by which a set of sigma factors spov genes that encode the specific SPoVS

proteins are involved in the regulation of the expression of the genes and proteins that accomplish each of the

steps. A principal step in the sporulation of vegetative cells starts with the formation of septa (FTzS ring), followed

by asymmetric division of the mother cell and the forespore, leading to the release of the forespore. (B) The

components of the spore of B. thuringiensis are outlined, revealing the presence of the bipyramidal crystal (ICP)

synthesized concomitantly with the sporulation. During the spore and structure assembly, there is the expression of

several cot genes. These genes and their products play a role in the assemblage of the external and internal

layers, similar to that of the bacteriophage T4. Moreover, some members of the genera Bacillus possess an

exosporium, -an outer layer missing in B. subtilis- that confers protection and a direct connection with the

environment. The expression and production of the insecticidal crystal proteins (ICP) (in yellow) are under the

regulation of the sigma factors, and together with sporulation, both are under metabolic regulated mechanisms at

the transcriptional and translated levels. Some of the SpOV proteins also participate in crystal production. Thus,

the spore of Bt is well-armored as an evolutive advantage for survival and success .

The lattice constant of the honeycomb structures was approximately nine nanometers (nm) for both B. cereus and

B. thuringiensis spores, visualized using atomic force microscopy (AFM) by . It was also possible to visualize the

species-specific spore assembly and nanometer-scale structure of the spore’s surfaces. Ensamblage of the fibrous

layer involves the Cot H- and Cot E-dependent proteins and the Cot E-specific protein ; this is similar to the

assembly of the spore-coating proteins, in that it mimics a non-mineral two-dimensional (2D) crystallization seeding

pattern that begins to assemble the coating proteins from the inner to the outer layers in a similar manner as has

been described for the bacteriophage lambda . This assembly process is well characterized in B. subtilis (Figure

1A).

In bacterial-cell division, the structural and cytokinetic functions require the formation of the septum, which involves

the assembly of a complex of proteins. Similar to B. subtilis sporulation, in B. thuringiensis sporulation, the

sporulation-specific proteins Spo0A and SpoIIE play a role in gene regulation and in the determination of the

structural properties of the specialized sporulation septum. Spore germination, nutrients, and mRNA number

abundance participate, possibly providing ribonucleotides . In B. thuringiensis, the mRNA number is 10–50

times higher than in other species of Bacillus and Clostridium . How is the distribution found of mRNA in the

spore compartments? A low abundance of mRNA is present in the mother cell and a high abundance of mRNA in

the forespore (Figure 1A).

The transcription of these mRNA is under the control of the sigma factors F or G, and this can be similar among

species of Bacillus. A minority of mRNA in the spores of these species is present at more than the molecule-per-

spore, averaging only 6% of all individual mRNA identified in these spores. Thus, 94% of mRNA participates in the
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generation of proteins that will affect the germination of the whole spore . The close relatives of B. subtilis, B.

cereus, Bacillus anthracis, and Bacillus thuringiensis Al Hakam, as well as the spores of Bacillus megaterium and

Clostridium difficile, lack several nucleotide biosynthetic enzymes, which are synthesized only at defined times in

spore outgrowth .

The 60 most abundant mRNA in all five Bacillus species transcribed in the developing spore were found only in

dormant species. Sigma E/K-dependent transcripts in spores might arise from weak–dependent transcription in the

forespore of some of these genes . A possibility could lie in the connection between the mother cell and the

forespore, termed a feeding tube in the cytoplasm , which serves the mother cell and transfers

small molecules, such as ATP and amino acids, into the developing spore. mRNA or mRNA fragments also move

from the mother cell into the forespore via this feeding tube . The precise time in sporulation at which the

feeding tube closes occurs late in forespore development. Developing spores cannot make ribonucleotides, amino

acids, or ATP, in that at least several TCA cycle enzymes are absent .

In referring to the structural assembly of the multilayered spore of the genus Bacillus, microscopy technology

advancements permitted us to approach the spore structure assembly . The structure assembly of the spore

coat is accompanied by the synthesis of proteins that contribute to the multilayered structure. These proteins exert

a strong influence on the core protection of the endospore, the maintenance of spore-core dehydration and

dormancy, and survival in the environment, distribution, and conferring germination . The cortex

is synthesized within the intermembrane space surrounding the forespore after the engulfment stage during

sporulation . The proteins for cortex synthesis are produced in both the forespore and the mother-cell

compartments. Peptidoglycan, lipids, and proteins (GerPA, GerP) (cortex lytic enzymes) form part of the outer coat,

the inner coat, and the cortex, playing a structural and biochemical function. For example, in B. cereus, it has been

shown that six GerP proteins share proximity with cortex–lytic enzymes in the inner coat .

4. The General Spore Germination Program in the Genus
Bacillus

In spore germination, molecular and morphogenetic changes are carried out as crosstalk among signals, germinant

nutrients, and spore components in the committed endospore in order to awaken or break dormancy . For an

endospore, the fate and the decision to germinate encodes in the dormant spore. The program of spore

germination refers to the multistep mechanism through which spores return to life, an awakening process that

enables them to reenter into metabolic activity . The knowledge of the components and signals

in spore germination derives from studies of the model organism Bacillus subtilis . However, there are

current efforts to update and focus on other members of the genus Bacillus, especially those that constitute a

problem in pathogenesis, health, agriculture, and in the food industry as well .

Which are the signals that initiate the process of awakening the dormant spore? What is known is that external

signals (germinants, small molecules) that sense germination-specific proteins (GR)-like receptors localize in the

outer and the inner coat of the spore . The phenotypical characteristic of the spore-
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germination stage is considered a weak stage or spot in the life cycle of Bacilli species. During this stage, the

spores become susceptible to physical, chemical, and environmental conditions, starting from the inner membrane

coat of the spore, to render these accessible to nutrients of low molecular weight, ions, nutrients, Dodecylamine,

and water, in order to flow through the core cortex .

The general mechanism of spore germination can be outlined as follows:

(1) Germinant sensing; (2) Commitment to germinate; (3) Release of spore depot of dipicolinic acid (DPA); (4)

Hydrolysis of peptidoglycan cortex spores; (5) Spore-core swelling and water uptake; (6) Cell-wall peptidoglycan

remodeling, and (7) Restoration of core protein and inner-spore membrane–lipid mobility. This mechanism

resembles a detailed general program for spore germination that is well characterized in B. subtilis, B. anthracis,

and B. cereus. In B. thuringiensis, the differences in the molecular components that are involved in these

processes are yet to be defined. One of the unsolved questions is related to the import and export of DPA and how

the nutrients are sensed in the commitment spore .

Detailed program for spore germination in which all of the molecular components are outlined: (1) Activation.

Nutrient germinant plus spores (minutes to hours). Lag phase, and (2) Commitment (a major change in IM

permeability and structure). GERP proteins allow the access of nutrients into the inner membrane, low-molecular-

weight, i.e., Dodecylamine, ions (H , Na , and K ). Channel formation by the multiple spore-specific SpoVA) (n = 7)

in Bacillus subtilis (Setlow and Christie., 2020; ; (3) Release of pyridine-2, 6-dicarboxylic acid

(dipicolinic acid [DPA]) chelated at 1:1 with divalent cations, predominantly Calcium (Ca DPA) through the IM

channels; (4) Enzymatic lysozyme-mediated cleavage of the cortex, favoring permeability into small molecules in

the inner coat, triggering spore germination; (5) Stage I. All of the Ca  DPA is released by the CLE cortex

degradation, and this event leads to passage into stage II , and 6. Stage II cortex degradation is complete. The

germ-cell wall and the core take up water and expand. This marks the initiation of germination, giving rise to

growing cells and to the activation of metabolic activity .

5. Implication of the Knowledge of Sporulation Structural
Assembly and Germination in the Soil Bacterium B.
thuringiensis

The stable and resistant nature of spores and the possibility of germinating and growing in a gut environment

render them suitable for treatment in the form of probiotics and as vehicles for vaccine and drug delivery. Spore

treatments have shown great promise in animal studies. However, human trials require going further. Nonetheless,

spores might open the door to safe, effective, and easy-to-administer therapeutics . It is pivotal to

elucidate and understand the life cycle of spore-forming bacteria, especially those bacilli that threaten agriculture,

the food industry, and health care . t has become a promising and potential new avenue of alternatives

against the biological control of insects and the application of biotechnology biomedicine. Furthermore, Bacillus

thuringiensis is viewed as a biofactory for the production of proteins, but also of other products for bioremediation

and for improvement as bioinsecticides. Moreover, parasporal delta endotoxins are highly specific against different
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orders of insects. However, Cyt proteins can exert a cytopathic effect on mammalian cells, specifically those

changed by some types of cancer. This double sword of Bt marked the biotechnological success of B.

thuringiensis; due to the versatility of Bt, great interest has emerged during the last two decades . Work in

this area ranges from basic research (mechanism of toxicity in insects) to applied science (the genetic engineering

of economic crops with cry genes), the assembly of proteins for crystal formation (structural biology), and

nanotechnology (drug-vehicle delivery or vehicles of subunit vaccines) . Furthermore, B. thuringiensis

can produce floating biofilms with a ring and a pellicle . During sporulation, the spores remaining in the biofilm

ring are of great utility for the food industry, because they confer spore resistance on washing and cleaning

procedures. The spores can restart a new biofilm when food production has resumed . 
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