# **β-Thalassemia Heterozygotes**

Subjects: Obstetrics & Gynaecology

Contributor: Sotirios Sotiriou

β-Thalassemia is the most prevalent single gene blood disorder, while the assessment of its susceptibility to coronavirus disease 2019 (COVID-19) warrants it a pressing biomedical priority.

**B-thalassemia** 

risk

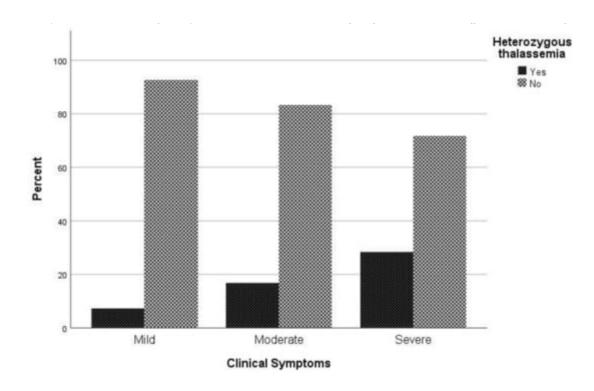
coronavirus

# 1. Introduction

Identifying medical conditions with a high or potentially deadly impact on the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a critical initial step towards containment of associated morbidity and mortality risks. Given that viral stress from SARS-CoV-2 elicits anabolic responses supported by increasing blood pressure to meet enhanced oxygen needs of vital organs and organ systems, hypoxemia is rendered a high-risk medical condition [1][2]. As the most common blood disorder affecting approximately one third of the global population, anemia presents a low tolerance to hypoxemia and may have either acquired polysystemic or inherited poly- or monogenic background [3]. Monogenic anemia—which is caused by abnormal hemoglobin—is a rather prevalent medical disorder with 270 million carriers worldwide [4][5][6].  $\beta$ -Thalassemia is the most common inherited single gene disorder in the world. Approximately one-third of all hemoglobinopathies and/or nearly 1.5% of the global population carry the  $\beta$ -thalassemia trait [7]. In this context,  $\beta$ -thalassemia heterozygosity is a strong candidate condition for assessing an individual's susceptibility to COVID-19.

## 2. Associations

Association of  $\beta$ -thalassemia heterozygosity with severe and critical COVID-19 symptoms.


Considering the clinical spectrum of COVID-19 as a primary outcome, patients were categorized into three groups (asymptomatic and mild/ moderate/ severe and critical). No difference in chest X ray or CT scan was observed among study participants. In univariate analysis, sex (p = 0.047), age (p < 0.001), atrial fibrillation (p = 0.022), coronary disease (p = 0.041), hyperlipidemia (p = 0.014), hypertension (p < 0.001), and being heterozygous for thalassemia (p = 0.004) were associated with severe COVID-19 symptoms (**Table 1**). In multivariate analysis, male sex (p = 0.023), increased age (p < 0.001), and being heterozygous for thalassemia (p = 0.002) were identified as independent risk factors for severe and critical clinical COVID-19 symptoms. Specifically, males had a 1.81 times (95% CI, 1.09 to 3.01) increased possibility for severe or critical clinical symptoms; increased age was associated with increased odds of severe and clinical symptoms with OR = 1.06 (95% CI, 1.04 to 1.08). A finding of great

interest is that patients who were heterozygous for thalassemia were 2.89 times (95% CI, 1.49 to 5.62) more likely to have severe and critical clinical symptoms of COVID-19 (**Figure 1**).

**Table 1.** Characteristics and COVID-19 clinical spectrum.

| S                              | everity         | ı                       | Univariate      | Regression      | e Ordinal Logistic<br>(Severe and Critical<br>s. Others) |                         |
|--------------------------------|-----------------|-------------------------|-----------------|-----------------|----------------------------------------------------------|-------------------------|
| Mild (%)                       | Moderate<br>(%) | Severe and Critical (%) | <i>p</i> -Value | <i>p</i> -Value | aOR with 95% CI                                          |                         |
| Sex (M/F)                      | 34/34           | 67/46                   | 52/22           | 0.047 *         | 0.023                                                    | 1.81<br>(1.09–<br>3.01) |
| Age (median, IQR)              | 51.5 (34)       | 64.0 (17)               | 70.5 (15)       | <0.001 ±        | <0.001                                                   | 1.06<br>(1.04–<br>1.08) |
| Atrial Fibrillation            | 17 (25.0)       | 32 (28.3)               | 33 (44.6)       | 0.022 *         | 0.787                                                    | 0.92<br>(0.49–<br>1.71) |
| Respiratory<br>Disease         | 5 (7.4)         | 13 (11.5)               | 14 (18.9)       | 0.104 *         | 0.325                                                    | 1.47<br>(0.68–<br>3.15) |
| Coronary Disease               | 7 (10.3)        | 23 (20.4)               | 20 (27.0)       | 0.041 *         | 0.955                                                    | 1.02<br>(0.50–<br>2.09) |
| Diabetes                       | 10 (14.7)       | 25 (22.1)               | 18 (24.3)       | 0.331 *         | 0.619                                                    | 0.85<br>(0.45–<br>1.60) |
| Neoplasia                      | 7 (10.3)        | 11 (9.7)                | 11 (14.9)       | 0.529 *         | 0.209                                                    | 0.61<br>(0.28–<br>1.32) |
| Hyperlipidemia                 | 21(30.9)        | 60 (53.1)               | 32 (43.2)       | 0.014 *         | 0.138                                                    | 0.65<br>(0.37–<br>1.15) |
| Hypertension                   | 24 (35.3)       | 62 (54.9)               | 56 (75.7)       | <0.001 *        | 0.104                                                    | 1.67<br>(0.90–<br>3.08) |
| β-Thalassemia<br>Heterozygotes | 5 (7.4)         | 19 (16.8)               | 21 (28.4)       | 0.004 *         | 0.002                                                    | 2.89<br>(1.49–<br>5.62) |

<sup>\*</sup> Chi-square test,  $\pm$  Mann–Whitney test; Bold is for the statistically significant results (p-value < 0.05).



**Figure 1.** Proportion of  $\beta$ -thalassemia heterozygotes relative to non-carriers regarding clinical symptoms to COVID-19.

#### 2.1. Association of β-Thalassemia Heterozygotes with Mortality Due to COVID-19

Regarding mortality associated with COVID-19 infection, in univariate analysis sex (p = 0.022), age (p < 0.001), atrial fibrillation (p = 0.002), respiratory disease (p = 0.027), coronary disease (p = 0.027), hypertension (p < 0.001), and being heterozygous for thalassemia (p = 0.005) were associated with mortality (**Table 2**). In logistic regression analysis, male patients had a 2.09 times (95% CI, 1.05 to 4.18) greater possibility of dying and patients with increased age were 1.06 times (95% CI, 1.03 to 1.09) more likely to die. It is worth noting that hyperlipidemia plays a beneficial role in COVID-19 mortality, as the odds ratio of mortality in patients with hyperlipidemia is 0.65 (95% CI 0.37–1.15). It should be highlighted that patient who are heterozygous for thalassemia have a 2.79 times (95% CI, 1.28 to 6.09) greater possibility of dying than other patients (**Figure 2**).

Table 2. Characteristics and mortality due to COVID-19.

| Mortality         |              | Univariate      |                   |                         | Multivaria<br>Logistic R |                    |                         |
|-------------------|--------------|-----------------|-------------------|-------------------------|--------------------------|--------------------|-------------------------|
| Yes (%)           | No (%)       | <i>p</i> -Value | OR with<br>95% CI | RR with<br>95% CI       | <i>p</i> -Value          | aOR with<br>95% CI |                         |
| Sex (M/F)         | 50/20        | 103/82          | 0.022 *           | 1.99<br>(1.10–<br>3.61) | 1.67 (1.06–<br>2.64)     | 0.036              | 2.09<br>(1.05–<br>4.18) |
| Age (median, IQR) | 72.5<br>(15) | 61.0<br>(24)    | <0.001 ±          | -                       | -                        | <0.001             | 1.06<br>(1.03–<br>1.09) |

| Mortality                      |              |                 | Univariate        | e                       | Multivaria<br>Logistic R |                    |                         |
|--------------------------------|--------------|-----------------|-------------------|-------------------------|--------------------------|--------------------|-------------------------|
| Yes (%)                        | No (%)       | <i>p</i> -Value | OR with<br>95% CI | RR with<br>95% CI       | <i>p</i> -Value          | aOR with<br>95% CI |                         |
| Atrial Fibrillation            | 33<br>(47.1) | 49<br>(26.5)    | 0.002 *           | 2.48<br>(1.40–<br>4.39) | 1.88 (1.28–<br>2.78)     | 0.201              | 1.64<br>(0.77–<br>3.48) |
| Respiratory<br>Disease         | 14<br>(20.0) | 18<br>(9.7)     | 0.027 *           | 2.32<br>(1.08–<br>4.97) | 1.74 (1.11–<br>2.74)     | 0.297              | 1.61<br>(0.66–<br>3.95) |
| Coronary Disease               | 20<br>(28.6) | 30<br>(16.2)    | 0.027 *           | 2.07<br>(1.08–<br>3.96) | 1.64 (1.08–<br>2.49)     | 0.808              | 0.90<br>(0.39–<br>2.09) |
| Diabetes                       | 18<br>(25.7) | 35<br>(18.9)    | 0.233 *           | 1.48<br>(0.77–<br>2.84) | 1.32 (0.85-<br>2.05)     | 0.758              | 0.87<br>(0.41–<br>1.91) |
| Neoplasia                      | 10<br>(14.3) | 19<br>(10.3)    | 0.367 *           | 1.46<br>(0.64-<br>3.31) | 1.30 (0.75–<br>2.24)     | 0.395              | 0.67<br>(0.26–<br>1.70) |
| Hyperlipidemia                 | 30<br>(42.9) | 83<br>(44.9)    | 0.773 *           | 0.92<br>(0.53–<br>1.61) | 0.94 (0.63–<br>1.41)     | 0.008              | 0.38<br>(0.19–<br>0.78) |
| Hypertension                   | 52<br>(74.3) | 90<br>(48.6)    | <0.001 *          | 3.05<br>(1.66–<br>6.60) | 2.30 (1.43–<br>3.70)     | 0.198              | 1.67<br>(0.77–<br>3.62) |
| β-Thalassemia<br>Heterozygotes | 20<br>(28.6) | 25<br>(13.5)    | 0.005 *           | 2.56<br>(1.31–<br>4.99) | 1.87 (1.24–<br>2.80)     | 0.010              | 2.79<br>(1.28–<br>6.09) |
| 100                            |              |                 |                   |                         |                          |                    | ■ Yes<br>≫ No           |
| 80                             |              |                 |                   |                         |                          |                    |                         |
| * Chi-square                   |              |                 |                   |                         |                          |                    |                         |
| Percent                        |              |                 |                   |                         |                          |                    |                         |
| 40                             |              |                 |                   |                         |                          |                    |                         |
| 20 -                           |              |                 |                   |                         |                          |                    |                         |
| ٥                              |              | No              |                   |                         | Yes                      |                    |                         |
|                                |              | 110             | D                 | eath                    | 103                      |                    |                         |

Figure 2. Proportion of  $\beta$ -thalassemia heterozygotes relative to non-carriers regarding mortality due to COVID-19.

#### 2.2. Admission of COVID-19 Infected β-Thalassemia Heterozygotes to the ICU

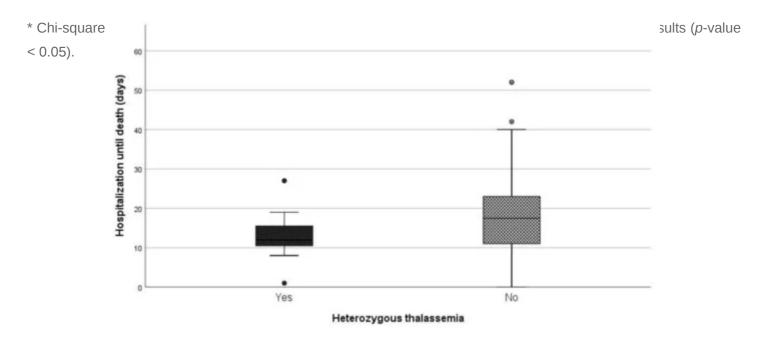
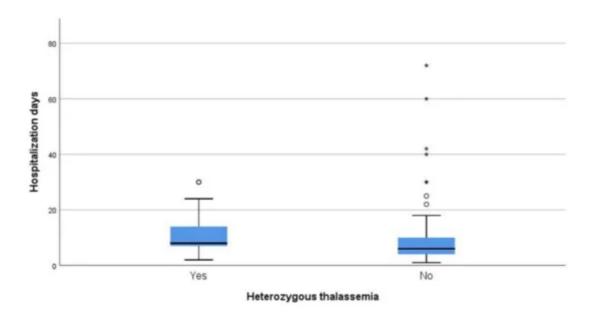

Regarding the requirement for ICU care, it was found through univariate analysis that age (p = 0.03), respiratory disease (p = 0.043), coronary disease (p = 0.029) and hypertension (p < 0.001) were associated with ICU admission (**Table 3**). Through logistic regression analysis, patients with hypertension had 5.12 times (95% CI, 2.04 to 12.87) greater risk of requiring ICU care than patients without hypertension. On the contrary, hyperlipidemia was identified as a protective factor against ICU admission, with OR = 0.44 (95% CI, 0.21 to 0.94). Furthermore, in relation to the requirement for ICU care, being heterozygous for thalassemia had no effect on the possibility of admission to the ICU (p = 0.505).

Table 3. Characteristics and ICU admission due to COVID-19.

| ICU                    |              | Univariate      |                    |                         | Multivaria<br>Logistic R |                    |                         |
|------------------------|--------------|-----------------|--------------------|-------------------------|--------------------------|--------------------|-------------------------|
| Yes (%)                | No (%)       | <i>p</i> -Value | OR with<br>95% CI  | RR with<br>95% CI       | <i>p</i> -Value          | aOR with<br>95% CI |                         |
| Sex (M/F)              | 36/17        | 117/85          | 0.186 *            | 1.54<br>(0.81–<br>2.92) | 1.41 (0.84–<br>2.37)     | 0.305              | 1.45<br>(0.72–<br>2.93) |
| Age (median, IQR)      | 66.2<br>(17) | 60.4<br>(24)    | 0.030 ±            | -                       | -                        | 0.649              | 1.01<br>(0.98–<br>1.04) |
| Atrial Fibrillation    | 21<br>(36.9) | 61<br>(30.2)    | 0.191*             | 1.52<br>(0.81–<br>2.84) | 1.39 (0.85–<br>2.25)     | 0.966              | 0.98<br>(0.43–<br>2.23) |
| Respiratory<br>Disease | 11<br>(20.8) | 21<br>(10.4)    | 0.043 *            | 2.26<br>(1.01–<br>5.04) | 1.83 (1.05–<br>3.17)     | 0.205              | 1.80<br>(0.73–<br>4.46) |
| Coronary Disease       | 16<br>(30.2) | 34<br>(16.8)    | 0.029 *            | 2.14<br>(1.07–<br>4.27) | 1.77 (1.08–<br>2.92)     | 0.393              | 1.48<br>(0.61–<br>3.59) |
| Diabetes               | 10<br>(18.9) | 43<br>(21.3)    | 0.699 *            | 0.86<br>(0.40–<br>1.85) | 0.87 (0.48–<br>1.64)     | 0.098              | 0.49<br>(0.21–<br>1.14) |
| Neoplasia              | 4 (7.5)      | 25<br>(12.4)    | 0.466 <sup>†</sup> | 0.58<br>(0.19–<br>1.74) | 0.64 (0.25–<br>1.63)     | 0.102              | 0.37<br>(0.11–<br>1.22) |
| Hyperlipidemia         | 22<br>(41.5) | 91<br>(45.0)    | 0.644 *            | 0.87<br>(0.47–<br>1.60) | 0.89 (0.55–<br>1.45)     | 0.033              | 0.44<br>(0.21–<br>0.94) |

| ICU                            |              |                 | Univariate        |                         | MultivariateBinary<br>Logistic Regression |                    |                          |                       |
|--------------------------------|--------------|-----------------|-------------------|-------------------------|-------------------------------------------|--------------------|--------------------------|-----------------------|
| Yes (%)                        | No (%)       | <i>p</i> -Value | OR with<br>95% CI | RR with<br>95% CI       | <i>p</i> -Value                           | aOR with<br>95% CI |                          |                       |
| Hypertension                   | 42<br>(79.2) | 100<br>(49.5)   | <0.001 *          | 3.90<br>(1.90–<br>7.99) | 3.04 (1.64–<br>5.63)                      | 0.001              | 5.12<br>(2.04–<br>12.87) |                       |
| β-Thalassemia<br>Heterozygotes | 11<br>(20.8) | 34<br>(16.8)    | 0.505 *           | 1.29<br>(0.61–<br>2.77) | 1.22 (0.68–<br>2.18)                      | 0.508              | 1.33<br>(0.57–<br>3.06)  | alassemia ically, the |


median duration of nospitalization among earners and non-earners was  $oldsymbol{ ilde{L}}$  and  $oldsymbol{ ilde{L}}$  . Cospectively



**Figure 3.** Days of hospitalization until death between carries and non-carriers.

### 2.4. Length of Hospitalization among Patients Who Survived

Regarding days of hospitalization among patients that survived COVID-19, the median duration was eight days for patients that were heterozygous for thalassemia and six days for non-carriers (p = 0.014) (**Figure 4**).



**Figure 4.** Days of hospitalization between carries and non-carriers that survived.

#### References

- 1. Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126, 1456–1474.
- 2. Rahman, A.; Tabassum, T.; Araf, Y.; Al Nahid, A.; Ullah, A.; Hosen, M.J. Silent hypoxia in COVID-19: Pathomechanism and possible management strategy. Mol. Biol. Rep. 2021, 48, 3863–3869.
- 3. Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2015, 387, 907–916.
- 4. Samara, M.; Chiotoglou, I.; Kalamaras, A.; Likousi, S.; Chassanidis, C.; Vagena, A.; Vagenas, C.; Eftichiadis, E.; Vamvakopoulos, N.; Patrinos, G.P.; et al. Large-scale population genetic analysis for hemoglobinopathies reveals different mutation spectra in Central Greece compared to the rest of the country. Am. J. Hematol. 2007, 82, 634–636.
- 5. De Sanctis, V. β-thalassemia distribution in the old world: A historical standpoint of an ancient disease. Mediterr. J. Hematol. Infect. Dis. 2016, 9, e2017018.
- 6. Williams, T.N.; Weatherall, D.J. World Distribution, Population Genetics, and Health Burden of the Hemoglobinopathies. Cold Spring Harb. Perspect. Med. 2012, 2, a011692.
- 7. Whetheral, D.J. The thalassemias. In Williams Hematology, 5th ed.; Beutler, E., Lichtman, M.A., Coller, B.S., Kipps, T.J., Eds.; McGraw-Hill: New York, NY, USA, 1995.

Retrieved from https://encyclopedia.pub/entry/history/show/32358