

Energy Efficiency in Smart Cities

Subjects: [Engineering, Electrical & Electronic](#)

Contributor: Carlos Patrão

Cities are constantly facing major challenges, mainly due to continuous population growth and their diversion to urban living. These challenges depend on cities' geography and culture but, not exhaustively, are, namely: congestion management, excess pollution, resource usage, absence of satisfactory physical and social infrastructures, necessity to maintain continuous sustainable economic growth, and increasingly narrower energy and environmental obligations. The energy transition on the roadmap to a decarbonized economy can never be implemented effectively, both in terms of costs and timing, without energy efficiency being the priority, and cities will have a crucial role in such a process.

[modeling tools](#)

[smart cities](#)

[electrification](#)

[energy efficiency](#)

1. Introduction

The United Nations Sustainable Development Goals (Ref. [\[1\]](#), with special prominence to SDG 11 [\[2\]](#), together with the New Urban Agenda [\[3\]](#), are catching international recognition to ensure a strong contribution from cities on the road to sustainability, in the pursuit to "Make cities inclusive, safe, resilient and sustainable" [\[4\]](#). Human life is going through a crucial phase, where efforts to achieve a sustainable balance with the environment are becoming more challenging. A clear example was the agreement reached in the European Parliament to bring the European Union (EU) to climate neutrality, through the approval of the European Climate Law, transforming the political commitment of the European Ecological Pact to bring the EU to climate neutrality by 2050 into a binding obligation, as well as providing European citizens and businesses with the legal certainty and predictability they need to plan their investments during this transition. After the 2050 horizon, the EU's objective will be to achieve negative emissions.

Currently, the generation of electricity is increasingly based on renewable sources, so switching from technologies that use fossil fuels to those that use electricity will generally reduce greenhouse gases (GHG) emissions and the energy dependence of most of the Member States. With the energy transition on the roadmap to a decarbonized economy, the role of electrification is essential, but it can never be implemented effectively, both in terms of costs and timing, without energy efficiency being the priority. A set of opportunities for energy efficiency in buildings, transport, and industries will allow energy savings by switching from inefficient fossil fuel technologies to more efficient electrical technologies. They also provide financial, environmental, health, and property benefits. Therefore, electrification must be seen as an energy efficiency measure if energy savings are achieved. Energy efficiency ensures a key role, not only in global climate change mitigation, but also in increasing the security of energy supply, business competitiveness, and social welfare [\[5\]\[6\]](#).

In harmony is also the European Commission, regarding the EU's climate targets that must be supported foremost by the energy-efficiency-first principle [\[7\]](#), at least since the publication of the Council Directive 93/76/EEC of 13 September 1993 to limit carbon dioxide emissions by improving energy efficiency (SAVE), and thus far, with the publication of Directive (EU) 2018/2002, amending Directive 2012/27/EU on energy efficiency (EED) [\[8\]](#), that energy efficiency is part of an ambitious European legislative framework to stimulate the rational use of energy. In Europe, the absence of energy efficiency policies would have contributed to about 12% higher energy consumption in 2013 [\[9\]](#).

Other EU energy efficiency policies are the Energy Performance of Buildings Directive [\[10\]](#), Ecodesign Directive [\[11\]](#), Energy Labelling Regulation [\[12\]](#), and Regulations for the Reduction of the CO₂ Emissions of Vehicles [\[13\]](#). The Energy Performance of Buildings Directive (EPBD—2010/31/EU) is the main European legislative instrument to promote the energy performance of buildings, regarding energy efficiency and renewable energies national requirements, and requiring Member States to implement an energy labeling system for buildings and define the technical requirements for nearly zero-energy buildings (NZEB). The Ecodesign Directive (2009/125/EC) to improve efficiency in energy-related products currently covers more than 30 product groups. The Energy Labelling Regulation (EU 2017/1369), on the indication by labeling and standard product information of the energy consumption and use of other resources by energy-related products, currently covers 18 different products, and the Regulations for the Reduction of CO₂ Emissions of Vehicles (EU 2019/631) sets CO₂ emission performance standards for new passenger cars and new vans in the EU.

As [Figure 1](#) shows, the European Union leads the world decarbonization process of the energy sector through a comprehensive legislative framework, which has been designed since 2015, providing strategic tools at the Member State level for the creation of the Energy Union, where energy planning is fundamental to fit all initiatives within the scope of energy

efficiency, to identify the best way to achieve the national assumed objectives reflected in the Paris Agreement of 2015 [14]. Thus, there is a clear need for a deeper exploration of the role of energy efficiency in energy planning, since the impact is not limited to a decrease in final energy consumption, but also has an impact on the energy supply side, namely, the need for available power for electricity generation (thus contributing to an increase in the share of the final energy consumption that is ensured by renewable sources), the need for investments to reinforce energy transmission and distribution networks, and non-energy impacts, namely, those that promote the improvement of quality of life.

Figure 1. European Union decarbonization legislative framework since 2015.

Electrification is a key tool to change from fossil to decarbonized resources, namely, in the decarbonization of the building and transportation sectors [15]. However, this energy transition process involves a large increase in certain critical mineral needs [16]. In a scenario that meets the goals of the Paris Agreement, the participation of the energy sector in the total consumption of some key minerals increases significantly. Additionally, it is expected that electricity consumption will increase and since, currently, not all electricity generation can be based on renewable energy sources, it will be crucial that today's cities be smart in a short period and ensure efficiency on the final consumption. Therefore, energy efficiency should be the first fuel to be considered in this transition process [17][18][19][20].

2. Smart City Concept and Energy Efficiency

Different terms referring to similar concepts, namely, "Smart City", with "Sustainable City", "Future City", "Green City", "Resilient City", "Eco-City", "Low-carbon City", "Intelligent City", and "Digital City" being the most common [4][21][22][23][24][25][26][27][28][29]. The use of a combination of terms can also be observed, proposing or defining new concepts, occasionally for demarcation purposes, like, for example, the concept of "Smart Sustainable City" [27][30][31]. It can also be found terms used to highlight distinctive dimensions of their specific assessment such as the "Resilient City" or "Knowledge City" [4][29].

Although sometimes not exactly having the same focus, offering alternative development pathways in response to urban challenges [4], the use of different terms to address the "Smart City" concept has been generating terminological misunderstanding [25][32][33]. Nowadays, "Smart City" is probably the most prevalent and acknowledged wording among the majority of citizens, media, investors, companies, and public authorities [34]. Public authorities and the business sector, in general, are using this wording, as it is a buzzword comprehensible by the majority of the targeted stakeholders [27][34].

The increasing interest in "Smart City" and related concept terms are well documented in earlier bibliometric studies, which highlight its growth in scientific publications: Martin de Jong [29] refers to an exponential growth in the use of the "Smart City" term since 2009 when analyzing the period from 1996 to 2013, where "Sustainable City" had about two and a half times more retrieved articles. The same accelerating growth was also demonstrated by Wang [35] when analyzing the articles in the period from 1992 to 2016. In 2021, Schraven [4] extended the search until 2019, which covered the release of the UN's SDGs [1], the New Urban Agenda [3], and other more recent related initiatives. The bibliometric analysis of 35 different concept terms taken from a total of 148 revealed that "Smart City" and "Sustainable City" were the most used terms, with the first overcoming the second since 2012. "Smart City" has undoubtedly become the most investigated concept in recent years, being published in almost half (46%) of the total number of articles analyzed by Schraven [4] over the last 30 years, apparently due to the increasing adoption of smart technologies (IoT, big data, sensors, smart grids). Schraven [4] also realized that the two most-used terms have a very high level of co-occurrence with each other and significant co-occurrence with other terms, revealing their dominant position and influence, forming two clusters about "Sustainable City" (compact, low-carbon, green, and liveable—the "eco-cluster") and "Smart City" (intelligent, digital, future, ubiquitous, connected, and creative—the "techno-cluster"). Some more recent policy initiatives (e.g., "United for Smart Sustainable Cities" (U4SSC) [36] and the ISO 37122 standard for "Sustainable Cities and Communities—Indicators for Smart Cities" [37]) seem to try to contribute to the combination of the "Sustainable" and "Smart" city concepts, the overall goal of urban development defined in the first and the necessary technological resources to achieve it defined in the second [4].

There are similarities between the concepts of "Sustainable City" and "Smart City", but there are also some significant differences. Studies show that a "Sustainable City" is more focused on environmental and social aspects, while a "Smart City" is mainly focused on the technological, economic, and social aspects [38]. However, despite the low initial weight placed on the importance of environmental factors, the "Smart City" concept seems to be moving towards addressing sustainability issues. Traditionally, the "Smart City" has been interpreted as being more technology-focused instead, rather than the holistic conceptualization. Nevertheless, a holistic view of "Smart City" that includes, among many others, environmental issues is becoming more widespread recently. It is expected that the "Smart City" concept would leverage the technological infrastructure being deployed in an urban environment to deliver key "smart services", such as smart healthcare, smart homes, smart transportation, smart workplaces, smart government, and many others [39]. This perspective is found in academic literature [40][41][42] and regional or international organizations, such as the European Commission, the IEEE, and the United Nations.

The European Commission (EC) has a vision of smart cities that is beyond the simple use of technology and ICT. The EC points out that smart cities are more about the interaction between all cities' infrastructures with the aim of providing multiple benefits to different sectors. The EC [43] states that smart cities are "*Cities using technological solutions to improve the management and efficiency of the urban environment*". It refers to the smart city as being "*a place where traditional networks and services are made more efficient with the use of digital and telecommunication technologies for the benefit of its inhabitants and business*". It is also stated that "*a smart city goes beyond the use of information and communication technologies (ICT) for better resource use and fewer emissions. It means smarter urban transport networks, upgraded water supply and waste disposal facilities and more efficient ways to light and heat buildings. It also means a more interactive and responsive city administration, safer public spaces and meeting the needs of an aging population*" [43]. The IEEE has also a wider perception of the smart city concept in which technology is regarded as an enabler for an improved quality of life and to reduce environmental impacts [38]. The IEEE Smart Cities Initiative [44] states that "*a Smart City brings together technology, government and society and includes but is not limited to the following elements: A Smart economy, Smart energy, Smart mobility, Smart environment, Smart living, and Smart governance*" [44].

In "Smart Cities and infrastructure report" [45], the United Nations states that there is no standardized, generally recognized definition for the "Smart City" concept. It is although indicated as a reference on the report [45], the definition presented by the International Telecommunication Union (ITU) in 2014, after performing an analysis of about 100 different definitions. This definition was published on the ITU-T Y.4900 recommendations [46], with the following proposal: "*an innovative city that uses information and communication technologies (ICTs) and other means to improve quality of life, the efficiency of urban operation and services, and competitiveness, while ensuring that it meets the needs of present and future generations with respect to economic, social, environmental as well as cultural aspects*". Even though this definition presented by the ITU [46] is actually for a "Smart Sustainable City", the United Nations uses it as a reference when citing the "Smart City" definition, asserting also that "*Governments and stakeholders need to work together to develop a common understanding of what Smart City means in their specific national and city-level contexts*" [45]. Currently, the United Nations refers to the "Sustainable Cities and Communities" term as a way to "*make cities and human settlements inclusive, safe, resilient and sustainable*" [47].

There is a wide variety of respectable studies aiming at the identification of the different dimensions of a "Smart City" [24][24][30][31][41][48][49][50][51]. They present different perspectives since the concept of a "Smart City" differs according to the different stakeholders, actors, and viewpoints of the literature [52]. In general, the literature points out the existence of seven main common different dimensions: People, Governance, Environment, Living, Mobility, Data, and Economy [24][30][41][48][49][50][51][52][53][54][55][56][57][58]. One of many common aspects is that energy and energy efficiency is considered one of the many sub-themes, usually inside the "Environment" dimension [41]. Considering all the multi-dimension concepts and all the different indicators inside them, energy efficiency concerns must be, directly or indirectly, taken into account and properly assessed on several of them when implementing a "Smart City" project. To have, for instance, an adequate and sustainable communications network (Data dimension), the efficiency of all the ICT equipment must be taken into account. Energy efficiency has to be considered in all technology-related dimensions, but even in the economy-related indicators, Energy Intensity is taken into account [49], which in some way is also related to energy efficiency. Almost all activities within cities require energy (i.e., transportation, work activities, security, entertainment, commerce, homes, etc.). Therefore, energy efficiency is becoming a crucial challenge for life in cities [59], and for the smart city implementations, that must be properly assessed.

With the increasing deployment of "Smart Cities", various smart city assessment tools with distinct evaluation indicators have been established [34]. These tools use different indicator sets for the overall assessment of a specific dimension of the smart city. Given that energy efficiency is usually integrated into the Environment dimension, it is important to properly evaluate the most adequate city energy systems modeling tools that can be used for a proper indicator calculation.

References

- United Nations. United Nations Sustainable Development Goals. Available online: <https://www.un.org/sustainabledevelopment/> (accessed on 2 April 2021).
- United Nations SDG11: Make Cities Inclusive, Safe, Resilient and Sustainable. Available online: <https://www.un.org/sustainabledevelopment/cities/> (accessed on 2 April 2021).
- United Nations. The New Urban Agenda. Available online: <https://habitat3.org/the-new-urban-agenda/> (accessed on 2 April 2021).
- Schraven, D.; Joss, S.; de Jong, M. Past, present, future: Engagement with sustainable urban development through 35 city labels in the scientific literature 1990–2019. *J. Clean. Prod.* 2021, 292, 125924.
- Bigano, A.; Ortiz, R.; Markandya, A.; Menichetti, E.; Pierfederici, R. The Linkages between Energy Efficiency and Security of Energy Supply in Europe. *Handb. Sustain. Energy* 2010.
- Allcott, H.; Greenstone, M. Measuring the Welfare Effects of Residential Energy Efficiency Programs; Working Paper Series; National Bureau of Economic Research: Boston, MA, USA, 2017.
- Taylor, K. Energy Efficiency Must Apply across All Renewables, EU Commission Says. 2021. Available online: www.euractiv.com (accessed on 14 April 2021).
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32. *Off. J. L* 2012, 315, 1–56.
- Bertoldi, P.; Mosconi, R. Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States). *Energy Policy* 2020, 139, 111320.
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). *Off. J. Eur. Union* 2010, 153, 35.
- Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009, establishing a framework for the setting of ecodesign requirements for energyrelated products (recast). *Off. J. Eur. Commun.* 2009, 285, 35.
- European Commission. Regulation (EU) 2017/1369 of the European Parliament and of the Council of 4 July 2017 Setting a Framework for Energy Labelling and Repealing Directive 2010/30/EU. 2017. Available online: <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02017R1369-20210501> (accessed on 14 July 2021).
- European Commission. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. 2019. Available online: <https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R0631&from=EN> (accessed on 14 July 2021).
- United Nations. The Paris Agreement; United Nations: New York, NY, USA, 2015.
- IEA—International Energy Agency. World Energy Outlook 2021. Available online: <https://www.iea.org/reports/world-energy-outlook-2021> (accessed on 20 October 2021).
- Governing the Dark Side of Renewable Energy: A Typology of Global Displacements—ScienceDirect. Available online: <https://www.sciencedirect.com/science/article/abs/pii/S2214629620304771> (accessed on 20 October 2021).
- Aditya, L. Financing Energy Efficiency, Part 1: Revolving Funds; World Bank: Washington, DC, USA, 2018.
- Wu, Y.; Singh, J.; Tucker, D.K. Financing Energy Efficiency, Part 2: Credit Lines; World Bank: Washington, DC, USA, 2018.
- Electrification of Transport and Residential Heating Sectors in Support of Renewable Penetration: Scenarios for the Italian Energy System|Elsevier Enhanced Reader. Available online: <https://reader.elsevier.com/reader/sd/pii/S0360544220301699?token=2173A4D481B019DDD9559937B57BCBA0CDBF4E806902730B223621DFC2F55833DF95833B50F3AE4B9D058A6F91AC8Ewest-1&originCreation=20211020115453> (accessed on 20 October 2021).

20. Dely, K.; Joubert, J.; Cities, P.S.E. About HeatNet NWE. 2019. Available online: https://www.nweurope.eu/media/8624/wpt3_d13_heatnet-procurement-guide_v2.pdf (accessed on 13 November 2021).
21. Mora, L.; Deakin, M. The first two decades of research on smart city development. In *Untangling Smart Cities*; Mora, L., Deakin, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–87. ISBN 978-0-12-815477-9.
22. Sharifi, A. A typology of smart city assessment tools and indicator sets. *Sustain. Cities Soc.* 2020, 53, 101936.
23. Akande, A.; Cabral, P.; Casteleyn, S. Assessing the gap between technology and the environmental sustainability of european cities. *Inf. Syst. Front.* 2019, 21, 581–604.
24. Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In *Proceedings of the 12th Annual International Conference on Digital Government Research*; New York, NY, USA, 12 June 2011; University of Maryland: College Park, MD, USA, 2011; pp. 282–291.
25. Ojo, A.; Dzhusupova, Z.; Curry, E. Exploring the nature of the smart cities research landscape. In *Public Administration and Information Technology*; Springer: Berlin/Heidelberg, Germany, 2016; Volume 11, pp. 23–47.
26. Hollands, R.G. Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? *City* 2008, 12, 303–320.
27. Höjer, M.; Wangel, J. Smart sustainable cities: Definition and challenges. In *ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing*; Hilty, L.M., Aebischer, B., Eds.; *Advances in Intelligent Systems and Computing*; Springer: Berlin/Heidelberg, Germany, 2015; Volume 310, pp. 333–349. ISBN 978-3-319-09227-0.
28. Li, Y.; Commenges, H.; Bordignon, F.; Bonhomme, C.; Deroubaix, J.-F. The Tianjin Eco-City model in the academic literature on urban sustainability. *J. Clean. Prod.* 2019, 213, 59–74.
29. de Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. *J. Clean. Prod.* 2015, 109, 25–38.
30. Al-Nasrawi, S.; Adams, C.; El-Zaart, A. A conceptual multidimensional model for assessing smart sustainable cities. *J. Inf. Syst. Technol. Manag.* 2015, 12, 541–558.
31. Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. *Sustain. Cities Soc.* 2017, 31, 183–212.
32. O'Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. *Appl. Energy* 2019, 237, 581–597.
33. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. *Sustain. Cities Soc.* 2018, 38, 697–713.
34. Patrão, C.; Moura, P.; de Almeida, A.T. Review of smart city assessment tools. *Smart Cities* 2020, 3, 1117–1132.
35. Wang, M.-H.; Ho, Y.-S.; Fu, H.-Z. Global performance and development on sustainable city based on natural science and social science research: A bibliometric analysis. *Sci. Total Environ.* 2019, 666, 1245–1254.
36. United for Smart Sustainable Cities (U4SSC). Available online: <https://www.itu.int:443/en/ITU-T/ssc/united/Pages/default.aspx> (accessed on 18 March 2021).
37. ISO—International Standardization Organization. ISO 37122:2019-Sustainable Cities and Communities—Indicators for Smart Cities; International Standardization Organization: Geneva, Switzerland, 2019.
38. Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? *Cities* 2017, 60, 234–245.
39. Iqbal, A.; Olariu, S. A survey of enabling technologies for smart communities. *Smart Cities* 2021, 4, 54–77.
40. Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. *Int. Rev. Adm. Sci.* 2016, 82, 392–408.

41. Sharifi, A. A critical review of selected smart city assessment tools and indicator sets. *J. Clean. Prod.* 2019, 233, 1269–1283.
42. Mora, L.; Deakin, M.; Reid, A.; Angelidou, M. How to overcome the dichotomous nature of smart city research: Proposed methodology and results of a pilot study. *J. Urban Technol.* 2019, 26, 89–128.
43. European Commission. What Are Smart Cities? Available online: https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en (accessed on 4 August 2020).
44. IEEE. IEEE Smart Cities. Available online: <https://smartcities.ieee.org/> (accessed on 12 June 2021).
45. United Nations. Smart Cities and Infrastructure Report of the Secretary-General Economic and Social Council; United Nations-Economic and Social Council, Commission on Science and Technology for Development: New York, NY, USA, 2016; p. 18.
46. ITU. Y.4901/L.1601-Key Performance Indicators Related to the Use of Information and Communication Technology in Smart Sustainable Cities; International Telecommunication Union: Geneva, Switzerland, 2016.
47. United Nations. Sustainable Development Goal 11+-Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable; United Nations: New York, NY, USA, 2019.
48. Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanović, N.; Meijers, E. Smart Cities-Ranking of European Medium-Sized Cities; Centre of Regional Science, Vienna University of Technology: Vienna, Austria, 2007; p. 28.
49. Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the smart city performance. *Innov. Eur. J. Soc. Sci. Res.* 2012, 25, 137–149.
50. Barrionuevo, J.; Berrone, P.; Ricart, J. Smart cities, sustainable progress: Opportunities for urban development. *IESE Insight* 2012, 14, 50–57.
51. Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building understanding of smart city initiatives. In Proceedings of the Electronic Government; Scholl, H.J., Janssen, M., Wimmer, M.A., Moe, C.E., Flak, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–53.
52. Koca, G.; Egilmez, O.; Akcakaya, O. Evaluation of the smart city: Applying the dematel technique. *Telemat. Inform.* 2021, 62, 101625.
53. Toli, A.M.; Murtagh, N. The concept of sustainability in smart city definitions. *Front. Built Environ.* 2020, 6, 77.
54. Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. *J. Urban Technol.* 2015, 22, 3–21.
55. Eremia, M.; Toma, L.; Sanduleac, M. The smart city concept in the 21st century. *Procedia Eng.* 2017, 181, 12–19.
56. Eger, J. Smart Growth, Smart Cities, and the Crisis at the Pump A Worldwide Phenomenon. *I-WAYS-J. E-Gov. Policy Regul.* 2009, 32, 47–53.
57. Kourtit, K.; Nijkamp, P.; Arribas, D. Smart cities in perspective—A comparative European study by means of self-organizing maps. *Innov. Eur. J. Soc. Sci. Res.* 2012, 25, 229–246.
58. Mahiznan, A. Smart cities: The Singapore case. *Cities* 1999, 16, 13–18.
59. Akcin, M.; Kaygusuz, A.; Karabiber, A.; Alagoz, S.; Alagoz, B.B.; Keles, C. Opportunities for energy efficiency in smart cities. In Proceedings of the 2016 4th International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 20–21 April 2016; pp. 1–5.

Retrieved from <https://encyclopedia.pub/entry/history/show/40246>