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Genome-scale metabolic models (GEMs) aim to systematically encode knowledge of the metabolism of an

organism. GEMs are composed of different layers of information and are constructed with a combination of

automated approaches and manual curation based on the available literature and experimental data. These

models not only encode existing knowledge about an organism, but can also generate new knowledge through

various analytical methods. The latter are mostly focused on the assessment of reaction fluxes through the

metabolic network in different conditions.
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1. Introduction

Genome-scale metabolic models (GEMs) have found numerous applications in different domains, ranging from

biotechnology to systems medicine . One of their main benefits is that they can provide genotype-to-phenotype

projections, such as growth rate and nutrient uptake predictions, and predictions of metabolic flux values. The latter

can be used to assess metabolic reaction activities in different contexts . A GEM describes a metabolic network

with a stoichiometric matrix  and each reaction is constrained by its minimal and maximal flux bounds. Moreover,

a GEM usually encodes the information on gene–protein reaction (GPR) associations, which can be applied in the

adaptation of a GEM to a specific context described with high-throughput data, such as transcriptomics or

proteomics data. Such integration can be performed with the application of context-specific model reconstruction

algorithms, which are used to adapt the flux bounds of a reference model to a given context described with (at least

one) high-throughput dataset. This allows one to at least partially automatise the reconstruction of tissue-specific,

cell type-specific, disease-specific, or even personalised GEMs. Further investigation of context-specific GEMs

includes comparative analyses between different conditions (e.g., analysis of metabolic reprogramming in cancer

cells ), and identification of biomarkers and therapeutic targets in different diseases or disorders .

2. Genome-Scale Metabolic Modelling

Genome-scale metabolic models (GEMs) aim to systematically encode our knowledge of the metabolism of an

organism. Reference GEMs describing generic models of a cell are constructed with a combination of automated
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approaches and manual curation. Such reconstructions are based on genome annotation data and a myriad of

additional data sources, including biochemical databases, organism-specific databases, experimental data, and

literature data . GEM reconstruction, its refinement, adaptation, and analysis are commonly performed with the

aid of model building tools  and reconstruction and analysis frameworks, such as COBRA , COBRApy ,

RAVEN  or PSAMM . These frameworks provide implementation of a vast scope of methods with different

goals, including the reconstruction of a draft metabolic model , visualisation of metabolic maps (e.g., see

Paint4Net ), identification of blocked reactions and gap filling  and analysis of reconstructed GEMs, such as

optimal steady-state flux assessment  or flux sampling . GEMs have been reconstructed for more than 1,000

different organisms . Moreover, advances in our knowledge guide iterative refinements of GEMs. For example,

Recon presents a generic human GEM that has gone through several iterations from Recon 1  to Recon 2.2 

and to Recond3D , and was later extended and integrated with the HMR2.0 database  to obtain the Human–

GEM model .

In the context of biomedicine, GEM applications range from the identification of disease biomarkers to the

prediction of drug targets , drug repurposing  and cancer research . GEMs can also be applied in a vast

array of bioengineering applications . These range from predicting cellular phenotypes (e.g., in the context of

predicting maximal growth in different conditions and identification of an optimal medium ) to guiding metabolic

engineering (e.g., in the context of optimal strain design ) and identification of a minimal gene set .

Most computational approaches aimed at the analysis of GEMs rely on constraint-based modelling and are based

on flux balance analysis (FBA)  or its derivations. FBA aims to find the metabolic flux values that are consistent

with a set of given constraints (minimal and maximal flux bounds) and which bring the system to a steady state.

Moreover, FBA requires a specification of required metabolic functionality (RMF) that is used to define an objective

function for optimisation. The optimisation can then be formulated as a linear programming (LP) problem. However,

since the constraints in this formulation are usually mathematically underdetermined , several nonunique optimal

solutions exist. To assess metabolic flux ranges through reactions that bring the system to a near optimal, or

optimal, steady state, flux variability (FVA) can be used . However, the latter still requires the specification of a

RMF, which is hard to identify in a general context and may yield biased results. Moreover, it has been shown that

the definition of the RMF strongly affects the precision of model predictions . An unbiased alternative to methods

relying on RMF-based optimisation is to use flux sampling of the feasible solution space without a specific

optimisation criterion .

Reconstructed GEMs, as described above, present the metabolism of a general cell in an arbitrary context and,

thus, compose generic models. Since only specific metabolic reactions are, in fact, active in a specific cell ,

these models need to be further tailored to a specific context in which only a subset of enzymes is active . This

process can be carried out using different reconstruction algorithms, in combination with high-throughput datasets

and available biological knowledge, to obtain context-specific models (see Figure 1 and Tables 1 and 2). The latter

present a subset of a generic GEM and can be used to describe the metabolism of a specific cell in a specific

context . Finally, such a model can describe a cell-, a tissue-, a disease-, or even an individual-specific model.
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Figure 1. Reconstruction and analysis of context-specific GEMs. Generic models are tailored to a specific context

with the integration of (high-throughput) experimental and literature data using a combination of automated

algorithms and manual curation. The reconstruction process can be additionally enhanced with the application of

reconstruction and validation protocols. The reconstructed models can be used to conduct different analyses,

ranging from the prediction of phenotypes and context-specific reprogramming of a metabolic network to the

identification of drug targets and disease biomarkers.

3. Algorithms and Tools for Reconstruction of Context-
Specific Models

Most algorithms for the reconstruction of context-specific GEMs rely on transcriptomics data to identify active and

inactive genes and to adjust metabolic reaction activities in a given context (see Table 2). In this case, each

transcript and its corresponding protein/enzyme needs to be associated with specific reactions. One of the first

attempts to correlate gene expression data with metabolic flux constraints was presented by Akesson et al. .

This was performed on a gene-by-gene basis, where fluxes through the metabolic reactions, with experimental

evidence suggesting the absence of their enzymes, were constrained to 0.

Gene–protein reaction (GPR) rules present an association between a specific gene and a metabolic reaction in a

model. These rules can describe different types of gene–reaction linkage. For example, different genes might

encode different subunits of the same enzyme. In this case, a reaction catalysed by this enzyme can be active only

when all of the respective genes are expressed (AND rule). Different genes might also express isoforms of the

same enzyme. In this case, a reaction catalysed by this enzyme can be active when at least one of the respective

genes is expressed (OR rule) . A large number of recent algorithmic approaches for the reconstruction of

context-specific GEMs rely on GPR rules to project the transcriptomics data to reaction activities. However, as

illustrated above, GPR rules are encoded in a model as Boolean functions. On the other hand, gene expression

data are usually described with non-binary values. In this case, logical OR can be interpreted as the maximum, and

logical AND as the minimum, between two or more values (Min/Max GPR mapping) . Alternatively, AND can also

be interpreted as the geometric mean, and OR as the sum of two or more values .
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Certain algorithms only require a definition of a core set of reactions, which are active in a given context. A list of

such reactions can be compiled manually (e.g., see ) or automatically using transcriptomics data (e.g., see 

). Some reconstruction algorithms allow the integration of other kinds of data, for example metabolomics or

proteomics data (see Table 2).

Researchers employ and extend the classification of methods as introduced in . Namely, the majority of the

methods can be classified into three main families, i.e., GIMME-, iMAT-, and MBA-like families. The researchers

also introduce a MADE-like family, which employs differential expression data in the reconstruction process (see

Table 1 and Figure 2). An overview of the algorithms for context-specific GEM reconstruction is summarised in

Table 2.

Figure 2. Families of algorithms for automated reconstruction of context-specific models.

Table 1. An overview of different families of algorithms for context-specific model reconstruction. Abbreviations:

RMF—required metabolic function; MILP–mixed integer linear programming.
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Family Description

GIMME-
like

Maximising the compliance with the experimental evidence while pertaining to a given RMF.

iMAT-like
Does not specify a RMF, matching of reactions states (active or inactive) with expression profiles

(present or absent), employs MILP-based optimisation.
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Table 2. An overview of algorithms for automated reconstruction of context-specific models. Abbreviations: LP—

linear programming; RMF—required metabolic function.

Family Description

MBA-like
Defining core reactions and removing other reactions while pertaining to model consistency,

support integration of different data types.

MADE-
like

Employs differential gene expression data to identify flux differences between two or more
conditions.

Algorithm Reference Family Input Data Comments

GIMME
Becker et al.,

2008 
GIMME-

like
transcriptomics

Inactivate reactions below a
threshold while maintaining

RMF.

GIMMEp
Bordbar et

al., 2012 
GIMME-

like
transcriptomics,

proteomics
RMFs based on proteomics

data.

GIM3E
Schmidt et

al., 2013 
GIMME-

like
transcriptomics,
metabolomics

No thresholding.

RIPTiDe
Jenior et al.,

2020 
GIMME-

like
transcriptomics

Minimises the weighted flux
values, no thresholding.

iMAT
Zur et al.,
2010 

iMAT-
like

transcriptomics,
proteomics

Matches reaction activities
with expression profiles, no

RMF.

INIT
Agren et al.,

2012 
iMAT-
like

transcriptomics,
proteomics, metabolomics

(qualitative)

Reaction weights based on
experimental evidence,

integration of metabolomics
data.

tINIT
Agren et al.,

2014 
iMAT-
like

prior knowledge,
transcriptomics,

proteomics, metabolomics
(qualitative)

Based on a set of required
metabolic tasks.

Lee
Lee et al.,
2012 

iMAT-
like

transcriptomics
Uses absolute expression

data (RNA-seq).

RegrEx
Estevez et

al., 2015 
iMAT-
like

transcriptomics
Uses absolute expression

data (RNA-seq) and
regularisation.

MBA
Jerby et al.,

2010 
MBA-like

prior knowledge,
transcriptomics,

proteomics, metabolomics,
fluxomics

Removes non-core reactions
and checks model

consistency for core
reactions.

mCADRE
Wang et al.,

2012 MBA-like
transcriptomics,
metabolomics

Different reaction scores to
determine core reactions.
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FASTCORE workflow for

microarray data.

rFASTCORMICS
Pires

Pacheco at
al., 2019 

MBA-like transcriptomics
FASTCORE workflow for
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