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The definition of the Metaverse is a virtual space where users can interact with one another, and with their environment, via

3D digital objects and virtual avatars, in a complex manner that mimics the real world, holding things developed using

artificial intelligence techniques; therefore, creating digital humans is essential to the development of the Metaverse and

other Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR) applications.

big data  metaverse  digital human  big data technologies  virtual worlds  VR

1. Digital Human Reconstruction

How to create digital humans has been a much-studied subject recently, due to the rising demand for virtual reality

applications, including the Metaverse. One of the core drivers of mathematical progress is the discovery of objects, patterns

and ultimately their formulaic representations; in the course of such progress, scientists often need to leverage a variety of

tools and data to help them cultivate ideas, propose a conjecture, and eventually prove/disprove with experiments and

evidence, where possible. There is no doubt that the evolution of computational methodology has not only changed the way

scientists conduct their studies, but has also accelerated the life cycle of scientific research, leading to profound impacts on

people’s daily lives—including, for example, the early hand-calculated prime number tables used by Gauss (which led to the

prime number theorem) , the RSA public key algorithm  inspired by prime number theory, and our modern blockchain

infrastructure.

The introduction of computational methodology has given scientists an understanding of problems previously

incomprehensible; however, while previous computational methodologies have proven effective in certain scientific problems

or domains, they are not easily generalized to other domains. Big data technologies, especially the field of deep learning that

has emerged in recent years, offer a range of techniques capable of effectively detecting patterns in data, and are

increasingly proving their utility in scientific disciplines. A specific case of virtual human reconstruction in the Metaverse will

serve as an example, to illustrate how deep learning can be used to solve mathematical problems in practical settings.

Virtual human reconstruction is one of the essential tasks in various Metaverse applications: it aims to utilize sensory data to

recover the three-dimensional geometry and appearance of humans, achieving accurate photorealistic reconstructions, and

ultimately producing compact 3D representations that can be ported to a variety of devices. This problem involves many

practical facets that require sophisticated engineering; however, its core challenges lie in deep learning modeling and

mathematical optimization, as shown in Figure 1.
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Figure 1. A hybrid approach of regression-based and optimization-based paradigms (courtesy of Kolotouros et al. ): an

iterative optimization routine is embedded into a neural network training loop, leading to a self-improving loop. Better fits help

the network train better, while better initial estimates from the network help the optimization routine converge to better fits.

Various techniques have been applied to recreate human models in the Metaverse. Many studies start from simple image-

based 2D feature detection, such as key points , silhouettes  and limb segments . It seems that simple movements can

be represented relatively clearly by two-dimensional contents; however, it is becoming clear that complex human behaviors,

which often occur in practical settings, do not fit the simple assumptions imposed by two-dimensional models, and that more

descriptive models with finer granularity are desirable; consequently, more studies  have turned to exploring more

complex human pose modeling in three dimensions. Recently, researchers have noticed that body shapes, contacts,

gestures and expressions which directly interact with the world are much easier to measure and evaluate; consequently, the

focus of researchers has shifted towards three-dimensional mesh recovery of the human body . Human body modeling

is then further extended by face and hands support . Meanwhile, similar techniques have also facilitated

downstream tasks, such as clothed human reconstruction , volume rendering , virtual try-on , the computer-

assistant system  and many more Metaverse applications. There are two common paradigms for dealing with virtual

human reconstruction: the optimization-based paradigm and the regression-based paradigm.

Although these two paradigms may have different advantages/disadvantages, and address different aspects, both

paradigms can share similar human body modeling techniques. Figure 2 shows an interesting possible way of integrating

both paradigms into one coherent framework. The next section will review the existing approaches, in terms of human body

modeling.
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Figure 2. A virtual reality shop developed by Unity3D for future integration into the Metaverse.

 

2. Review of Human Body Modeling

Early human body modeling started with the study of articulated geometric primitives, including line segments , cylinders

, planar rectangles  and ellipsoids . As three-dimensional full-body scanners became accessible, more detailed

measurements of body surfaces could be accurately recorded, such as the CAESAR (Civilian American and European

Surface Anthropometry Resource)  dataset. The availability of large amounts of body scan data has given rise to a

powerful representation: the statistical body model, which factors body deformations into identity-dependent and pose-

dependent components. Among the statistical body models, SCAPE , SMPL , SMPL-X , SMPL+H , 3DMM 

and STAR  are popular ones, which are not only capable of effectively modeling both shape and pose deformations, but

are also highly compatible with existing graphics rendering engines, benefiting from the explicit mesh model. This family of

explicit approaches first learns shape deformations through principal component analysis of body scans, and then combines

them with skeletal pose-driven deformations (so-called linear blend skinning in traditional skeletal animation), to construct a

shape-and-pose parametric human body model. Despite the popularity of explicit approaches, they still have their limitations:

firstly, global blend shapes may capture spurious long-range correlations , resulting in non-local deformation artifacts;

secondly, correlations between body shape and pose-dependent shape deformation may be ignored; furthermore, due to the

linear nature of principal component analysis, it can be difficult to reproduce the highly nonlinear deformations of body soft

tissue.
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In order to overcome the limitations of explicit approaches, instead of explicitly defining the human body as mesh vertices

and edges or other elements, implicit approaches try to define surfaces as level sets of continuous functions. Due to these

continuous properties, this implicit representation has a better chance of being elegantly optimized and integrated with deep

learning frameworks: it is continuous across the spatial domain, and thus theoretically has infinite resolution, and it can

easily handle highly nonlinear deformations, and even topological changes, which are not possible with explicit approaches.

Study  estimated implicit surface functions, by aligning image pixels with the global three-dimensional shape or texture

of the photographed object, and then using a dedicated multi-level network to refine the resulting geometry. The flexibility of

implicit approaches enabled it to handle intricate surfaces and topological changes with ease, but there was one drawback,

which was that topologically distinct human representations can exist across time: in other words, implicit human

representations may not be topologically consistent in time.

3. Optimization-Based Paradigm

In this paradigm, the human body model is explicitly optimized, by minimizing an objective function that fits the model to the

observations in an iterative manner. The objective function typically consists of two parts: (1) the data term is a measure of

the alignment between the extracted observation features and the transformed human body features; (2) the regularization

term is added, to constrain the convergence that preserves a physically plausible body model. In earlier work, the silhouette

feature played a crucial role in fitting the body model to the image, as it was used to penalize pixels in non-overlapping

regions .

With the emergence of deep learning, many studies have utilized it to calibrate the optimization initial conditions. SMPLify 

adopts off-the-shelf neural networks  to detect two-dimensional key points, and then iteratively fits a SMPL model, to

detect the key points of an unconstrained image. While SMPLify produces relatively well-aligned results, sparse key points

do not offer sufficient constraints for body shape optimization. To improve geometric details,  combined key points,

silhouettes and part segments, to further constrain the optimization process. Moreover,  have shown that deep learning

techniques can learn local landscapes and decent directions of optimization from training data, and then use them to guide

the gradient-based optimization process: in this way, traditional problem-independent optimization schemes can be endowed

with the ability to adaptively learn problem-specific convergence schemes. Image-based key point regression was performed

by , to obtain three-dimensional body key points, then solve the inverse kinematics based on the key points and the

skeletal structure, so as to calculate the accurate joint rotations, ultimately estimating the parameters of a SMPL model.

Although the optimization-based paradigm can faithfully reconstruct the human body when high quality data is available, it

performs poorly in situations where data is scarce and useful information is latent; furthermore, as the optimization-based

paradigm intrinsically tries to solve complex non-convex optimization problems in high-dimensional spaces, its outcomes are

susceptible to initialization and prone to falling into spurious local minima.

4. Regression-Based Paradigm

Alternatively, the regression-based paradigm exploits the powerful learning and approximation capabilities of neural

networks, to recover model parameters directly from sensory data. To achieve better performance, researchers have

explored a wide variety of network architectures and regression objectives—for example,  was one of the pioneering

efforts to incorporate the SMPL model into an end-to-end network architecture that minimized the reprojection errors
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between manually annotated and estimated key points. An end-to-end adversarial learning framework was proposed by ,

which used a discriminator to supervise the training process, so as to exclude anthropometrically implausible or self-

intersecting body structures. A top-down framework was proposed by , to simultaneously regress SMPL parameters of

multiple people in a coherent manner, where depth ordering was consistent, and no interpenetration occurred among

reconstructed people. Instead of regressing the SMPL parameters,  opted to directly regress the mesh vertices using a

Graph Convolutional network, thus allowing the template mesh structure to be explicitly encoded within the network, easily

exploiting the mesh spatial locality. Inspired by , VIBE  went a step further, to estimate dynamic motion sequence from

videos. By replacing the regression network with a temporal generative network, and changing the three-dimensional

supervision dataset to a motion capture dataset, AMASS , VIBE empowered an adversarial learning framework with

temporal information, enabling motion sequence estimation as a whole.

To leverage expressive human models and paired data,  adopted a divide-and-conquer strategy, by breaking down

the human reconstruction problem into part-specific estimation subproblems, where body, hand and face estimates were

performed using the respective part-specific models. The final expressive model was obtained by assembling the individual

results of the subproblems into the corresponding body template layers. ExPose  directly regressed hands, face and body

parameters in the SMPL-X format, and utilized body-driven attention to localize the face and hands regions for refinement,

using part-specific knowledge learned from existing face- and hand-only datasets. A real-time method was introduced by ,

to capture body, hands and face with competitive accuracy, by exploiting correlations between body and hands. Pose2Pose

 extracted joint-specific local and global features, to train a graph convolutional neural network, and regress body/hand

joint rotations from it. PIXIE  first fused the features from body, face and hand experts, according to their part-specific

confidences, and then fed these features into the part-specific networks, for robust regression.

5. Technologies in AR/VR/XR Platforms and the Metaverse: Future
Trends

In the researchers' opinion, AR/VR/XR applications will undoubtedly, in the near future, become the ultimate customer

service platforms. In other words, AR/VR/XR applications will at least become the dominant platforms, if they do not

completely wipe out the current mobile and computer platforms. Consequently, a big data surge will very soon occur in the

virtual world. The Metaverse is likely to be the front platform to face the data surge challenge, due to its rapid growth in

recent years. The following figure shows a recently developed VR-based shopping platform.

The researchers observed that two extreme situations would occur in the Metaverse, while conducting user recommendation

and data analysis: (1) The cold start problem. This situation often occurs when too little data is available for data analysis,

due to the VR platforms being new to users, and to not much information having been generated and accumulated for

analysis, a common situation in the big data environment, when new platforms are released for users; (2) The virtual data

explosion problem. This situation occurs when the Metaverse or VR platforms generate too much data, including user

interaction data, wearable sensor data, eye tracking data, location trajectory data, brain EEG data, and business transaction

data. Figure 3 shows the data sources of the Metaverse and its architecture , which indicates that the Metaverse consists

of various data sources from physical, social and digital worlds.
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Figure 3. Metaverse architecture of integrated social, physical and digital worlds, modified based on . The social world

mainly consists of human communities.

Several methods have been suggested for solving the abovementioned problems. In , a position-based VR online

shopping recommendation system was developed, to solve the cold start problem in VR platforms. In such a system, the

cold start problem is tackled by analyzing new users’ interaction and behaviors within the virtual world. For instance, the

position-based VR online shopping system acquires new users’ trajectories in the virtual world, and conducts analysis based

on their movements, to generate user recommendations, as shown in Figure 4.
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Figure 4. Position-based analysis for VR shopping recommendation (green line is user trajectory).

Future trends in solving the cold start problem in the Metaverse will further utilize users’ behavior and sentiment data,

including user eye tracking data, user movement trajectory, wearable user device data, and user sentiment data. In

particular, human brain data analysis will likely become an essential technology for user analysis in VR platforms, such as

the Metaverse.

The cold start problem is not a persistent problem in VR platforms, as it can be solved automatically when data accumulation

reaches a certain quantity, whereas the virtual data explosion problem is a persistent challenge to VR platforms like the

Metaverse. The wide range of data sources in the Metaverse will grow exponentially, due to its digitization in nature. Some

research studies have suggested adopting the Data as a Service (DaaS) framework , as the solution to the data explosion

problem in the digital world, including the Metaverse. Several other solutions, including tensor networks and sentiment

analysis, have been proposed, to solve this problem. The future trends of technical development in the Metaverse and other

VR platforms can be summarized as follows:

Digital human reconstruction is becoming a crucial area for the Metaverse and other VR platforms: this is a core

technology that can accelerate the development of the Metaverse, so as to truly realize human–machine interaction in

virtual worlds, as mentioned in the previous sections;

Digital Twin-related methods are the foundation for creating digital worlds that can mimic the physical world. The digital

twin is defined as the effortless integration of data between a physical and virtual environment, in either direction [167].

[54]
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VR-developing tools, such as Unreal Engine, Unity, 3DS Max & Maya, SketchUp, etc., will be the major developer’s

toolkits for digital twin models in the coming decades. The future trends in digital twin will focus on the following: enabling

a conformance relationship between digital twin and the real world; digital world autonomy, runtime self-adaptation and

self-management; and integration and cooperation, to achieve common goals or provide services [168]. A number of

digital twin applications have been developed, based on Microsoft Kinect sensors and the Oculus VR headset.

Brain–Computer Interface (BCI) technology will become a very important area for the Metaverse and for VR platforms.

Previous research indicates that non-invasive BCI technology has been applied extensively in various areas in recent

years, because of its minimal potential risks and time precision . Figure 5 shows the high-performance EEG BCI

method (left), and EEG BCI experiments (right) .

Figure 5. Segmented EEG time window (left), source: ; EEG experiment (right), source: .

The NDA/PDA-based methods are adopted, to enhance EEG data analytical efficiency, in order to accommodate the real-

time interaction in the Metaverse and VR platforms [74]. The definition for the NDA method is as follows: if S [a, b] ⊆ A [1, k],

if x∈[a, b] satisfies:

(1)

(2)

where m  is the adjusting parameter, and S [a, b] is an NDA set. The ND-based method derives the data values using

ksdensity function, to generate a probability distribution . The definition for the PDA method is as follows: the PDA model

takes one of the calculated σ and λ values as λ × t, as indicated in the following equations, 11 and 12. Assuming the original

data set has σ, then Mean (λ) is the event rate. If Mean (λ) − λ = ∆, then λ × t is lying between Mean (λ) and λ. With |y − λ × t|

= a, a +a = ∆ is satisfied.

(3)
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(4)

where N(t) is the sample data in the t time window. The Gamma function is utilized in the PDA method for processing

complex numbers, which is expressed in (5) below :

(5)

The ∆ parameter is used to regulate the size of the sample data sets, to get the nearest λ and σ values. The ∆ parameter in

the PDA plays the same role that it plays in the NDA method. The PDA model employs a PDA benchmark point selection

method .

Blockchain technology is an efficient and secure solution for digital worlds, such as the Metaverse. In the blockchain

model, a new transaction can be verified and added to existing records, i.e., blocks, through linking the new transaction to

previous ones, by cryptographic hash operation . Each block contains a cryptographic hash of the previous block, a

timestamp, and transaction data . The main characteristics of blockchain technology are that it is secure,

decentralized, digitized, collaborative and immutable: these characteristics make blockchain technology a perfect solution

for digital virtual worlds, such as the Metaverse. Currently, the most successful security technology for blockchain

employs the Public Key Infrastructure (PKI)-based blockchain methods . Researchers in the field have started to

search for more efficient solutions. The future trends in blockchain technology development in the Metaverse intend to

focus on more autonomous, intelligent and scalable models, such as intelligence-agent-based blockchain , Self-

Sovereign Identity (SSI) blockchain , non-fungible tokens (NFTs)  and bio-identity-based blockchain.

Artificial intelligence (AI) is a discipline essential to almost all areas in our modern world, particularly for future virtual

worlds such as the Metaverse. AI can accelerate analytical efficiency, enhance security and privacy, improve

interoperability, and provide better solutions for human–machine interaction and collaboration. The increase in

applications of Natural Language Processing (NLP), sentiment analysis and brain informatics technologies to digital

worlds is stimulating the development of AI in these areas. The successful stories of AI implementation in image

recognition, voice recognition, human–machine interaction and intuition, reveal the promising future of AI in the

Metaverse and other virtual worlds. A recent survey showed that a majority of studies had focused on exploring efficient

integration and collaboration between Edge AI architecture and the Metaverse .

The following Figure 6 demonstrates how the Metaverse and its related technologies, which include big data, have evolved

and developed .
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Figure 6. A chronicle of the Metaverse and its related techniques, modified based on .

Data sources in the Metaverse and other virtual platforms are growing exponentially; therefore, big data technologies are

crucial for the Metaverse, if it is to efficiently manage its digital world, and provide users with real-time analytical services.

Big data technologies are fundamental tools for rendering virtual platforms, such as the Metaverse, feasible for users. In

other words, big data is a fundamental component in the Metaverse; and the Metaverse accelerates the development of big

data technologies; however, big data is not only crucial in the virtual world—it is also an important component of our real

physical world, as evidenced in various areas. Figure 7 shows the relationship between big data and the Metaverse.

Figure 7. Big data plays a key component in both the physical world and virtual worlds. The Metaverse is a virtual world

parallel to the real physical world: the two are sometimes connected by augmented reality and digital twin.

The current definitions of the Metaverse vary according to different studies; however, many researchers share a common

view that the Metaverse is imitating our physical world. In this work, the researchers believe that future virtual worlds,

including the Metaverse, will develop to be totally different world from our physical world: these virtual worlds will go beyond

our current social structure and civil life. Table 1 shows the example applications of the Metaverse and big data in several

key sectors.

Table 1. A brief review of example applications of big data and the Metaverse in major sectors.
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