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Interest in artificial intelligence (Al) has been increasing rapidly over the past decade and has expanded to
essentially all domains. Along with it grew the need to understand the predictions and suggestions provided by
machine learning. Explanation techniques have been researched intensively in the context of explainable Al (XAl),

with the goal of boosting confidence, trust, user satisfaction, and transparency.

Explainable Artificial Intelligence learning analytics XAl XAl techniques

| 1. Explainable Artificial Intelligence

The term XAl is best described as “Al systems that can explain their rationale to a human user, characterize their
strengths and weaknesses, and convey an understanding of how they will behave in the future” lll. Research on
XAl shows that introducing explanations to Al systems to illustrate their reasoning to end users can improve
transparency, interpretability, understanding, satisfaction, and trust EI4IE, Observing the explainability techniques
with relation to the machine learning models, Barredo et al. [8 presented a taxonomy that separates transparent
models (such as decision trees, logistic regression, linear regression, and K-nearest neighbor) that are de facto
explainable from models where post-hoc explainability has to be utilized (e.g., support vector machines,
convolutional neural networks) to generate their explanations. Post-hoc explanations can be model-agnostic or
model-specific. The former can be applied to any machine learning model with no regard to its inner process or
representation, while the latter is related to the interpretation and understanding of a specific machine learning
model. Various classifications exist for explanations in Al. They can be categorized mainly as global approaches,
explaining the entire model, versus local approaches explaining an individual prediction; or as self-explainable
models with a single structure versus post-hoc approaches explaining how a model produces its predictions

without clarifying the structure of the model [EIlZ],

Common explainability approaches Bl include global explanations, which explain how different features/variables
affect predictions within the model in question; feature relevance, which presents the computed relevance of each
feature in the prediction process (simplified displays with a selection of the most important features are often used);
and example-based explanations, which select a particular instance to explain the model, offering a more model-
agnostic approach, which can be local or global. Additionally, local explanations are often used in systems for
students and focus on a particular instance, independent of the higher-level general model. Comparison uses a
selection of instances to explain the outcome of other instances on a local level. Counterfactual explanations

describe a causal situation (i.e., formulated as “If X had not occurred, Y would not have occurred”) and explain and
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demonstrate the effects of small changes of feature values on the predicted output. Explanations by simplification
use mentioned techniques to build a new similar yet simplified system (with reduced complexity but similar
performance) based on the trained model to be explained. The aforementioned techniques for post-hoc
explanations can include visualizations and text explanations. Their selection is conditioned by the type of machine

learning model used for prediction.

Lim & presented a slightly different classification of ten explanation types, dividing them into model-independent
and model-dependent explanation types. Model-independent explanations include input explanations, which inform
users about the used input sensors and data sources, to ensure understanding of the explanation scope; output
explanations inform users about all the possible outputs a system can produce; what explanations inform users of
the system state in terms of output value; and what if explanations allow users to speculate about different
outcomes by changing the set of user-set inputs. Model-dependent explanations, on the other hand, include why
explanations, informing users why the output is derived from input values, possibly returning used conditions
(rules); why not explanations, presenting users with information about why the alternative output was not produced
based on the input; how to explanations, which provide explanation as to how the desired outcome is generally

produced; and certainty explanations, which inform users about the certainty of the produced outcome.

Explanations within XAl lack standardization for their design, as well as their evaluation, as confirmed by literature
reviews of the field €21, Haque et al. @ conducted a literature review of the XAl field and extracted major research
themes as future research directions: XAl standardization (which includes developing comprehensive guidelines or
standards for developing an XAl system), XAl visualization (focus on empirically measuring the explanation quality
dimensions), and XAl effects (measuring user perceptions of the transparency, understandability, and usability of
XAl systems). Additionally, Mohseni 19 recognized that the XAl design and evaluation methods should be adjusted

based on the set goals of XAl research.

| 2. XAl in Education

Al systems are complex and, by default, suffer from bias and fairness issues. Explanations of Al were introduced in
the field of human—computer interaction as a way to allow users to interact with systems that might be faulty in
unexpected ways 1. Explanations allow users to engage with Al systems in an informed manner and adapt their
reliance based on the provided explanations . Multiple studies have shown that introducing explanations in
tutoring and e-learning systems increases students’ trust. Ooge et al. & observed changes in trust after introducing
explanations in an e-learning platform for mathematics exercise recommendations. Explanations increased initial
trust significantly when measured as a multidimensional construct (consisting of competence, benevolence,
integrity, intention to return, and perceived transparency), while no changes were observed with one-dimensional
measures. Conati et al. 12l presented students with personalized XAl hints within an intelligent tutoring system,
evaluating their usefulness, intrusiveness, understanding, and trust. Providing students with explanations led to
higher reported trust, while personalization improved their effectiveness further. The improvement in understanding
of the explanations was related to students’ reading proficiency; students with high levels of reading proficiency

benefited from explanations, while students with low levels did not. A study of XAl in education J analyzed the
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concepts of fairness, accountability, transparency, and ethics and proposed a framework for studying educational

Al tools, including analysis of stakeholders, benefits, approaches, models, designs, and pitfalls.

Displays that aggregate different indicators about learners, learning processes, and/or learning context into
visualizations can be categorized as learning analytics (LA) 12l A systematic review of LA dashboard creation 14
showed that most dashboards (75%) are developed for teachers and that less focus is put on solutions targeted at
learners. Additionally, only two observed propositions provided feedback or warnings to users, and only four papers
used multiple data sources, indicating that this is an opportunity for future research. It is important to note that LA
does not necessarily include Al. In the core literature 131, LA is defined as the “analysis and representation of data
about learners in order to improve learning”. It can be conducted using traditional statistical methods or other data
analysis approaches without the involvement of Al. Predictive modeling, the base functionality of many LA systems,
is not that different from a traditional teacher recognizing which students are struggling in their class and providing
them extra help or direction during the semester. The cost of LA utilization is derived from its functionalities; firstly,
the predictions and analyses displayed in LA systems are based on estimations and probabilities, which many
users fail to understand correctly B4l Making decisions based on wrongly understood probabilities is
problematic, especially if the output triggers other actions, or self-regulated learning, without the teacher’s
involvement (131, Additionally, there are challenges with privacy, data quality, availability, and fitness of data used in
LA solutions in education 8. On the other hand, there are many benefits of utilizing LA, mainly the improvement of
the learning process based on the data available. Furthermore, students can improve their perceptions of the
activity and have their personalized analyses available in more depth than a teacher could provide to each student
during their limited time 3. Overview of the trends in education systems 17 has shown that Al has been
recognized as a trend in the educational setting, as more and more Al systems are used in LA, learning
management systems, and educational data mining [26l. Some of the most common uses of Al 28 include use
cases for profiling and prediction, assessment and evaluation, adaptive systems and personalization, and
intelligent tutoring systems. Along with Al models, interpretable machine learning and XAl have been gaining
interest in LA systems, as they offer a better understanding of the predictive modeling 28l The trend of including Al
in education has resulted in the development of the term artificial intelligence in education (AIEd). This field
overlaps with LA. The main benefits of introducing Al in education and in the LA field 2 can be summarized with
the development of intelligent agents, personalized learning systems, or environments and visualizations that offer

deeper understanding than the classic non-Al analyses.

Related work on predicting students’ course achievement used logs from virtual learning environments 22 along
with demographic data 2 and grades 22 in their prediction models. The need for the interpretability of the
complex models used in education mining data techniques has been highlighted 23, and explanations of the
model’s predictions have been introduced slowly, by 24 offering verbal explanations (i.e., “Evaluation is Pass
because the number of assessments is high”), and by ! offering verbal and visual explanations to students. In a
related study, Conijn et al. 22 analyzed the effects of explanations of an automated essay scoring system on
students’ trust and motivation in the context of higher education. The results indicated there is no one-size-fits-all

explanation for different stakeholders and in different contexts.
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| 3. Measuring Trust and Satisfaction

Various elements can be observed for measuring the effectiveness of an explanation; namely, user satisfaction,
trust assessment, mental models, task performance, correctability LI, and fairness [28l. Researchers focused on the
first two measures. Researchers followed the definition of trust as provided by Lee [, defining it as “an attitude
that an agent will achieve an individual's goal in a situation characterised by uncertainty and vulnerability”. Many
scales for assessing trust are presented in the scientific literature, and many of them were created with
interpersonal (human-to-human) trust in mind. A considerable research gap is still reported in the studies, focusing
on human-Al trust 28 Vereschak et al. [28 surveyed existing methods to empirically investigate trust in Al-
assisted decision-making systems. This overview of 83 papers shows a lack of standardization in measuring trust
and considerable variability in the study designs and the measures used for their assessment. Most of the
observed studies used questionnaires designed to assess trust in automation (i.e., 22BABLIE2N  Numerous factors
have been shown to increase users’ trust [3l. Transparency has gained much attention, highlighting the need for
explanations that make the systems’ reasoning clear to humans. However, trust has been found to increase when
the reasoning for the Al system’s decision is provided and to decrease when information on sources of uncertainty
is shared with the user 4],

Explanations cannot be evaluated without measuring the user’s satisfaction with the provided explanation, which
Hoffman (4 defines as “the degree to which users feel that they understand the Al system or process being
explained to them. It is a contextualised, a posteriori judgment of explanations”. A similar study measuring trust,
explanation satisfaction, and mental models with different types of explanations has been conducted in the case of
self-driving cars 331, The study reported the lowest user satisfaction with causal explanations and the highest levels
of trust with intentional explanations, while mixed explanations led to the best functional understanding of the
system. Related evaluation of understandability, usefulness, trustworthiness, informativeness, and satisfaction with
explanations, generated with popular XAl methods (LIME 88, SHAP 27, and Partial Dependence Plots or PDP [28])
was conducted by B, reporting higher satisfaction with global explanations with novice users compared to local

feature explanations. Comparing the popular methods, PDP performed best on all evaluated criteria.

Comparing levels of explanation satisfaction and trust between different groups of users can be conducted based
on various user characteristics. Level of experience and age are (along with personality traits) two of the major
user characteristics recognized to affect user performance and preferences in general human—computer
interaction. Although the scale from novice to expert is continuous, there is no universally accepted classification
and definition of users’ level of experience and/or knowledge 49, Level of experience is recognized as “the relative
amount of experience of user segments of the user population” 1. In higher education, groups of students can be
distinguished based on the amount of ECTS (European Credit Transfer and Accumulation System) points they
acquired during their studies. ECTS credits express the volume of learning based on the defined learning

outcomes and their associated workload 42!,
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