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Artificial intelligence’s rapid advancement has enabled various applications, including intelligent video surveillance

systems, assisted living, and human–computer interaction. These applications often require one core task: video-

based human action recognition.

video-based human action recognition  action recognition  human action

1. Introduction

Artificial intelligence (AI) redefines the understanding of the world by enabling high-impact applications such as

intelligent video surveillance systems , self-driving vehicles , and assisted living . In addition, AI is

revolutionizing areas such as education , healthcare , abnormal activity recognition , sports , entertainment

, and human–computer interface systems . These applications frequently rely upon the core task of video-

based human action recognition, an active research field to extract meaningful information by detecting and

recognizing what a subject is doing in a video . Since its critical role in computer vision applications, the

action recognition study can lead to innovative solutions that can benefit society in various ways. Nevertheless, it

can take time to introduce oneself to the subject thoroughly.

2. Understanding Video-Based Human Action Recognition
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Figure 1. Video-based human action recognition overview. Part (A) represents human action; researchers

instinctively associate a sequence of gestures with an action. For example, researchers might think of the typical

hand wave when researchers think of the action greeting. On the contrary, imagining a person running will create a

more dynamic scene with movement centered on the legs. Part (B) explains current challenges in the field, and

Part (C) shows the relevant dataset used.

2.1. What Is an Action?

To understand the idea behind an action, picture the image of a person greeting another. Probably, the mental

image constructed involves the well-known waving hand movement. Likewise, if researchers create a picture of a

man running, they may build a more dynamic image by focusing on his legs, as depicted in Figure 1. Researchers

unconsciously associate a particular message with a sequence of movements, which they call “an action” . In

other words, human action is an observable entity that another entity, including a computer, can decode through

different sensors. The human action recognition goal is to build approaches to understand the encoded message in

the sequence of gestures.

2.2. Challenges Involved in Video-Based Human Action Recognition

While humans have a natural ability to perceive and comprehend actions, computers face various difficulties when

recognizing such human actions . Researchers categorize the challenges into five primary categories: action-

class variability, sensor capabilities, environment conditions, dataset restrictions, and computational constraints. By
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understanding these challenges, researchers may build strategies to overcome them and, consequently, improve

the model’s performance.

2.2.1. Action Class Variability

Both strong intra- and inter-class variations of an action class represent a challenge for video-based human action

recognition . The intra-class variations refer to differences within a particular action class . These variations

stem from various factors, such as age, body proportions, execution rate, and anthropometric features of the

subject . For example, the running action significantly differs between an older and a younger individual.

Additionally, researchers have repeated some of the actions so many times that researchers already perform them

naturally and unconsciously, making it difficult even for the same person to act precisely the same way twice .

Finally, cultural contexts can impact how humans act, such as in the case of the greeting action class . Due to

the variability, developing a single model that accurately represents all instances of the same class is challenging

. Therefore, mitigating intra-class variation is a crucial research area in computer vision to represent all

instances of the same class accurately.

Conversely, inter-class variation refers to the dissimilarities between distinct action classes , representing a

significant challenge because some actions could share major feature vectors . For example, while standing up

and sitting down may be perceived as distinct actions, they share the same structure and semantics, making it

challenging to differentiate one from another if the model approach does not consider their temporal structure . A

similar case is the walking and running actions, which, despite being different, can be seen as variations of the

same underlying action. Therefore, to make computer vision applications more accurate and valuable, it is

essential to make models that can handle inter-class variations.

2.2.2. Sensor Capabilities

In computer vision, a sensor detects and measures environmental properties such as light, temperature, pressure,

and motion to convert them into electrical signals for computer processing . Due to the capture of rich visual

information, the RGB camera is the most common sensor used in video-based human action recognition, which

senses the light intensity of three color channels (red, green, and blue) .

Using an RGB camera entails some challenges, including a reduced perspective due to the limited field of view ,

which may cause the target to be partially or not present in the camera field; a partial temporal view of the target

subject is known as occlusion  and can be caused either by an object, another subject, the same subject or

even the light conditions. Dealing with missing information is difficult because the occlusion may hide the action’s

representative features . For example, if a player’s legs during a kick are not visible to the camera’s field of view

throughout a soccer match, it can be challenging to establish if they made contact with the ball.

Furthermore, there is no semantic of how to place the camera sensor, which implies that the target subject can

appear in infinite perspectives and scales . On the one hand, some perspectives may not help recognize an

action ; for instance, when a person is reading a book, they will usually hold it in front of them; if the camera
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viewpoint is the subject’s back, it will not perceive the book, and therefore, it will not be able to recognize the

action.

2.2.3. Environment Conditions

Environmental conditions can significantly impact the classification accuracy of a model to recognize human

actions by affecting the significance of the captured data . To illustrate, poor weather conditions such as rain,

fog, or snow reduce the target subject’s visibility and affect the appearance features extracted. Likewise, in “real”

conditions, the target subject will find itself in a scene with multiple objects and entities, which will cause a dynamic,

unpredictable, and non-semantic background ; the delineation and comprehension of the objective and

background can become increasingly complex and challenging when additional factors or variables are presented,

which obscure the distinction between the foreground and background. Additionally, environmental conditions can

generate image noise that limits representative visual features’ extraction and complicates the subject track over

time .

The environment light is also critical in identifying human actions , primarily if the model approach only relies on

visual data for feature representation. Lighting conditions can cause subjects to be covered by shadows, resulting

in occlusions or areas of high/low contrast, making taking clear, accurate, and visual-consistent pictures of the

target subject complex. These circumstances may also result in images differing from those used during model

training, confounding the recognition process even further.

2.2.4. Dataset Restrictions

The effectiveness of a machine learning model for recognizing human actions heavily depends on the dataset’s

quality used in its training phase . The dataset’s features, such as the number of samples, diversity, and

complexity, are crucial in determining the model’s performance. However, using a suitable dataset to boost the

model’s accuracy takes time and effort .

The first approach is constructing the dataset from scratch, ensuring the action samples fit the application’s

requirements. However, this process can be resource-intensive  because most effective machine learning

models work under a supervised methodology, and consequently, a labeling process is required . Data labeling

 involves defining labeling guidelines, class categories, and storage pipelines to further annotate each action

sample individually, either manually or by outsourcing to an annotation service to ensure consistent and high-

quality data samples.

For some application domains, data acquisition can be challenging due to various factors , such as the unique

nature of the application, concerns regarding data privacy, or ethical considerations surrounding the use of certain

types of data . Consequently, data acquisition can be scarce, insufficient, and unbalanced in the action classes,

presenting significant obstacles to developing effective models or conducting meaningful analyses .
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The second approach involves utilizing well-known datasets with a predefined evaluation protocol, enabling

researchers to benchmark their methodology against state-of-the-art techniques. Nevertheless, there are some

limitations, including the availability of labeled data; for example, the UCF101  and HMDB51  are one of the

most used benchmark datasets . Still, their data dimensionality is insufficient to boost the deep-learning model

. Furthermore, current datasets for action recognition face the challenge of adequately representing and labeling

every variation of a target action , which is nearly impossible due to the immense variability in human

movements and environmental factors. This limitation can impact the accuracy and generalizability of action

recognition models if the dataset does not represent the same data distribution of the target application .

Another main problem with publicly available datasets is their degradation over time ; for example, a researcher

that aims to use the kinetics dataset  must download each video sample from the Internet. However, some

download links may no longer work, and specific videos may have been removed or blocked. As a result,

accessing the same dataset used in prior research is impossible, leading to inconsistent results .

Most of the datasets provide the video along with a textual label tag . Although this is enough to train a model to

recognize human action, they have two main limitations. On the one hand, there is no clear intuition that text label

tags are the optimal label space for human action recognition , particularly in cases where a more nuanced or

fine-grained approach to labeling is required or in an application scenario where multi-modal information is

available . On the other hand, the exclusive use of RGB information in current datasets overlooks the potential

benefits of other input sensors , such as depth or infrared sensors, which may provide more detailed and

complementary representations of human actions in specific application scenarios.

3. The Evolution of Video-Based Human Action Recognition
Approaches

3.1. Handcrafted Approaches

As described in Figure 2, handcrafted approaches established the foundation for video-based human action

recognition, which entails a manual feature engineering process, where human experts manually design features

that support a computer to understand.
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Figure 2. The Evolution of Action Recognition Approaches. The initial attempt at vision-based human action

recognition relied on global representations (A), which were inferior to local representations (B). Lastly, deep

learning approaches (C) became the most popular, with 3D convolutional neural networks becoming the most

advanced because they can learn multiple levels of representations.

Two main components usually form handcrafted approaches. Firstly, feature extraction  transforms the input

video into a video representation of the action. Secondly, the Action Classification  component maps the video

representation onto a label tag.

3.1.1. Feature Extraction

Global representations  are the first attempt to recognize actions whose intuition is to capture the video input

into one global feature. A simple intuition of the effects of this type of method is our natural ability to recognize

human actions only by looking at the subject’s silhouette. However, this approach proved inadequate in addressing

the numerous challenges posed by videos or images, such as different viewpoints and occlusions. Consequently,

global representations could not fully capture the variability of an action. Among the most relevant methods are

Motion Energy Image (MEI) , Motion History Image (MHI) , silhouettes , and Spacetime Volume (STV) .

The world is full of little details that are difficult to capture using the “big picture”. Intuitively, as humans, to discover

those little secrets, researchers need to explore, focus on the details, and zoom in on the regions of interest, which

is the idea behind local representations , as shown in Figure 2B. Local representations seek to extract

descriptors from multiple regions of the video to obtain insights into the details. Local approaches break down into

a sequence of steps: (a) detection of points of interest, (b) extraction of video descriptors, and (c) aggregations of

local descriptors. As a consequence, the researcher’s contributions can be three-fold.

As the name suggests, the first step is to detect which regions of the video to analyze. Nevertheless, determining

the significance of a region can be a relatively tricky undertaking. Applying edge detection algorithms is one

method, such as Space-Time Interest Points (STIPs)  and hessian detector . However, its application could

lead to noise and lousy performance due to the extraction of edges that belong to something other than the target
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subject. To assess the regions’ relevance and eliminate noisy information, Liu et al.  propose using statistical

properties as a pruning method.

Camarena et al.  suggest that pose estimation can be used as the regions of interest, resulting in a method

that has a fixed and low number of processing areas, which ensures a consistent frame processing rate. However,

the approach is dependent on the subject body’s visibility.

Another solution is to apply dense sampling , which consists of placing points without semantics. Dense

sampling increases the classification accuracy, but it is computationally expensive . In addition, noise injected by

other motion sources can affect the classifier’s performance .

Once researchers have determined which regions to analyze, they must extract the corresponding region

description. Visual and motion data are essential for accurately characterizing an action . In this regard, the

typical approach combines several descriptors to have a complete perspective of the target action. Regarding the

visual information, researchers have a Histogram Of Oriented Gradients 3D (HOG3D) , Speed-Up Robust

Features (SURF) , 3D SURF , and pixel pattern methods . On the other hand, descriptors that focus

on motion information include Histogram of Oriented Flow (HOF) , Motion Boundaries Histogram (MBH) , and

MPEG flow .

Capturing motion information is a complex task; videos are composed of images in which the target person moves

or changes location over time . The naive method uses cuboids, which utilize static neighborhood patterns

throughout time. However, cuboids are unsuitable for modeling an object’s temporal information. Its natural

evolution was trajectory-based approaches  that rapidly became one of the most used methods .

Trajectory-based methods use optical flow algorithms to determine the position of the object of interest in the next

frame, which helps to improve the classification performance . Although several efficient optical flow algorithms

exist, their application at different points of interest can be computationally expensive . To reduce the

computational time, it is essential to know that there are several motion sources besides the subject of interest,

including secondary objects, camera motions, and ambient variables. Focusing on the target motion may reduce

the amount of computation required. On the one hand, researchers can use homographies  for reducing the

motion’s camera; on the other hand, pose estimation  can be used to remove the optical flow process

thoroughly.

Descriptor aggregation is the final stage in which the video descriptor is constructed using the region descriptors

acquired from the preceding processes. There are several methods, including Bag-of-Visual-Words (BoVW) ,

Fisher Vectors , Stacked Fisher Vector (SFV) , Vector Quantization (VQ) , Vector of Locally Aggregated

Descriptors (VLAD) , Super Vector Encoding (SVC) . Among the handcrafted approaches, it is popularly

referred to as FV and SFV, along with dense trajectories achieving the best classification performance .

3.1.2. Action Classification
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Action classification aims to learn a mapping function to convert a feature vector to a label tag. The literature

exposes different approaches, including template-based , generative , and discriminative models 

.

Template-based models are the naive method that compares the feature vector to a set of predefined templates to

assign the label tag of the closest instance given a similarity measure. The generative models  are based on

probability and statistics techniques; some representative works include Bayesian Networks and Markov chains.

Discriminative models are one of the most common techniques, including most machine learning methods .

Due to its performance, handcrafted approaches commonly rely on Support Vector Machines (SVM).

Researchers rely on dimensionality reduction techniques  to lower the model’s complexity and extract

meaningful feature vectors that boost the performance in high-dimensional datasets. Standard techniques include

Principal Component Analysis (PCA)  and Linear Discriminant Analysis (LDA) . On the one hand, PCA assists

in identifying the most representative features, while LDA aids in finding a linear combination of feature vectors that

distinguish different action classes.

3.2. Deep Learning Approaches

Due to their strong performance in various computer vision tasks , Convolutional Neural Networks (CNNs)

have become increasingly popular. Hence, its application to vision-based human action recognition appeared

inevitable.

Andrej et al.  developed one of the first approaches, which involved applying a 2D CNN to each frame and then

determining the temporal coherence between the frames. However, unlike other computer vision problems, using a

CNN does not outperform handcrafted approaches . The main reason was that human actions are defined by

spatial and temporal information, and using a standalone CNN does not fully capture the temporal features .

Therefore, subsequent deep learning research for human action recognition has focused on combining temporal

and spatial features.

As a common practice, biological processes inspire computer vision and machine learning approaches. For

example, as individuals, researchers use different parts of our brain to process the appearance and motion signals

researchers perceive . This understanding can be used for human action recognition, as suggested by .

The concept is straightforward. On the one hand, a network extracts spatial characteristics from RGB images. On

the other hand, a parallel network extracts motion information from the optical flow output . The network can

effectively process visual information by combining spatial and temporal information.

Due to the comparable performance of two-stream networks to trajectory-based methods , interest in these

approaches grows, leading to novel research challenges such as how to merge the output of motion and

appearance features. The most straightforward process, referred to as late fusion , is a weighted average of the
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stream’s predictions. More sophisticated solutions considered that interactions between streams should occur as

soon as possible and proposed the method of early fusion .

Because of the temporal nature of videos, researchers investigated the use of Recurrent Neural Networks (RNN)

 and Long-Term Short-Term Memory (LSTM)  as the temporal stream for two-stream approaches. As

proven by Ma et al. , pre-segmented data are necessary to fully explore the performance of an LSTM in videos

thoroughly, eventually leading to Temporal Segment Networks (TSN), which has become a popular configuration

for two-stream networks .

A generalization of two-stream networks is multi-stream networks , which describe actions using additional

modalities such as pose estimation , object information , audio signals , text transcriptions , and depth

information .

One factor that impacts the performance of deep neural networks is the amount of data used to train the model. In

principle, the more data researchers have, the higher our network performance. However, the datasets employed

in vision-based human action recognition  do not have the scale that requires a deep learning model .

Not disposing of enough data has various implications, one of which is that it is difficult to determine which neural

network architecture is optimal. Carreiera et al.  introduced the Kinetics dataset as the foundation for re-

evaluated state-of-the-art architectures and proposed a novel architecture called Two-Stream Inflated 3D ConvNet

(I3D) architecture, based on 2D ConvNet inflation. I3D  demonstrates that 3D convolutional networks can be

pre-trained, which aids in pushing state-of-the-art action recognition further. Deep learning methods work under a

supervised methodology implicating considerable high-quality labels . Nevertheless, data notation is a time-

intensive and costly process . Pretraining is a frequent technique to reduce the required processing time and

amount of labeled data . Consequently, researchers explored the concept of 2D CNN inflation further ,

yielding innovative architectures such as R(2+1)D .
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