

Digital Twin Smart Cities for Disaster Risk Management

Subjects: **Engineering, Environmental**

Contributor: M. R. Mahendrini Fernando Ariyachandra , Gayan Wedawatta

It is widely accepted that digital and intelligence technologies can help solve key aspects of disaster risk management such as disaster prevention and mitigation, and rescue and recovery. Digital Twin (DT) is one of the most promising technologies for multi-stage management which offers significant potential to advance disaster resilience. Smart Cities (SCs) use pervasive information and communications technology to monitor activities in the city. With increasingly large applications of DTs combined with big data generated from sensors in a SC, it is possible to create Digital Twin Smart Cities (DTSCs).

digital twins

disaster risk management

preparedness

smart cities

resilience

natural hazards

vulnerability

1. Introduction

A disaster is a 'serious disruption of the functioning of a community or a society at any scale due to hazardous events interacting with conditions of exposure, vulnerability and capacity, leading to one or more of the following: human, material, economic and environmental losses and impacts' ^[1]. Natural hazard-induced disasters can have a life-altering influence on the individuals and families fortunate enough to survive them ^[2]. Despite the ingenuity, the effect of natural hazard-induced disasters can be felt at the community, city, and state level, or can even impact an entire country ^[3]. Over the last decade, a series of such events have caused economic losses in the tens of billions of pounds. Examples include hurricane Ida (United States) in 2021, the North American windstorm (United States, Mexico and Canada) in 2021, China floods (China) in 2020, cyclone Amphan (Eastern South Asia) in 2020, and hurricanes Harvey and Maria (United States) in 2017. In 2020 alone, direct economic losses and damages from natural hazard-induced disaster events were estimated at GBP 205 billion. Comparatively, this was well below the record-breaking highs of GBP 425 billion in losses in 2011 and GBP 370 billion in 2017 ^[4]. Recent storms Dudley and Eunice, which hit the UK in February 2022, are predicted to cost between GBP 2.5 billion and GBP 3.7 billion ^[5]. Over the last two decades, there have been over 7000 disaster events globally, claiming over 1.23 million lives (averaging over 60,000 lives per year) and affecting more than 4 billion people (many on multiple occasions) ^[6]. Additionally, disasters led to approximately GBP 2.26 trillion in economic losses worldwide ^[6]. These numbers present major demands for improving existing disaster risk management systems, including disaster response and recovery on a continuous basis ^[7], and there are many difficulties inherent in achieving these aims.

Such devastating and increasing social and economic impacts caused by disasters worldwide have necessitated the authorities to improve how they seek to mitigate, prepare for, respond to, and recover from disasters as a key priority at international, national, and local levels [8]. These collective efforts resulted in the establishment of emergency and disaster management systems such as the Federal Emergency Management Agency (FEMA) (United States), the Ministry of Emergency Management of China, and the United Nations Office for Disaster Risk Reduction (UNDRR) [9]. However, these systems lack technical interoperability, functional integration, and resource sharing, which currently remain obstacles to effective disaster management [10].

The increasing trend in the use of digitalisation may open new avenues to more network-centric and data-centric disaster risk management. The Coronavirus (COVID-19) pandemic is a living example which demonstrated how technology can offer substantial improvements to disaster responses in many forms; for example, improved testing and disease detection [11], improved policy and decision-making [12], improved training and education, and to efficiently manage imposed work and social distancing [13]. The role of technology in optimising risk reduction, mitigation, preparedness, response, and recovery is paramount from both an operational and strategic viewpoint, and digital innovations associated with Industry 4.0 have become key tools to use therein [14]. Hence, digital transformation and technologies have now become essential choices for disaster risk management. Among these technologies, the advent of Digital Twin (DT) and Smart City (SC) applications have emerged, presenting new opportunities for leveraging digitalisation to better manage disaster risk management.

The Digital Twin (DT) is one of the most beneficial technologies for better managing complex environments and facilitating connectivity through a variety of self-operative functionalities [15]. Digital Twin is a digital replica of a real-world asset or operation and differs from traditional Computer-Aided Design (CAD) and is based on massive, cumulative, real-world, real-time data measurements in multiple dimensions [16][17][18]. DTs evolve along with the physical asset or operation during their whole life cycle, enabling real-time bidirectional mappings between the virtual and physical assets or operations [19]. The term Smart City (SC) is rather ambiguous as the precise content, features, and nature of SCs tend to vary from country to country, depending on geographical conditions, ecosystems, and resource availability [20][21][22]. Broadly, though, a Smart City (SC) can be defined as an integrated living solution that perceptively and efficiently connects many life aspects such as power, transportation, and buildings to improve the quality of life for its citizens. A SC also looks to the future, emphasising the importance of resource and application sustainability for future generations [21][23]. Whilst there is some debate as to whether a SC is being used as a tool for smart public administration or a marketing tool [24], there is wider acceptance of the benefits associated with the concept. A Digital Twin Smart City (DTSC) combines these two components to provide functionalities that can synthesise the unique characteristics and constraints of a community during a disaster event and predict the evolution of a community during the aftermath of a disaster, enabling better disaster risk management [25].

2. Concepts and Evolution of Digital Twin, Smart City and Disaster Risk Management

2.1. Digital Twin (DT)

A digital twin (DT) is a digital counterpart of a real-world physical asset, and it is a model with a time dimension for all its attributes. Hence, it incorporates the changes over time in the same model while representing different virtual instances at a given point in time. A DT differs from traditional Computer-Aided Design (CAD) and is based on massive, cumulative, real-time, real-world data measurements in multiple dimensions [16][17][18][26]. DTs evolve along with the physical asset during their whole life cycle, enabling real-time bidirectional mappings between the physical and virtual assets [19]. A DT uses the information of a digital model across the entire life cycle of an infrastructure, and its concept dates back to Dr Grieves' presentation at the University of Michigan to the industry in 2002 [27]. Industry experts predict that the DT market will reach USD 48.2 billion by 2026 [28][29]. The dynamic nature of maintenance, along with the growing application of digital twin systems to tackle the aftereffects of the COVID-19 pandemic, are the primary drivers of the digital twin market's growth.

These DTs are of four levels: Digital Twin Prototype (DTP), Digital Twin Instance (DTI), and two types of Digital Twin Environments (DTEs) known as Adaptive DT and Intelligent DT. These DTs differ depending on their relationship with the physical asset's life cycle and their dependency on the DTs' operators. The following describes the four types of DTs as defined in literature [27][30][31][32][33][34][35][36][37].

- Level 1: Digital Twin Prototype (DTP)—design engineers produce a DTP that describes the prototypical artefact for a new asset [27]. Hence, the DTP exists before there is a physical asset. This model contains design attributes such as initial designs, analyses, and processes generated by project stakeholders. DTPs hold the end-user requirements and other data necessary to define the new asset's intended function [37]. Therefore, it supports decision-making at the concept design, preliminary design, and detailed design stages of the building/infrastructure [35]. The users exploit these attributes to assess technical risks and issues in upfront engineering and later twin its physical asset in the real world.
- Level 2: Digital Twin Instances (DTIs)—project stakeholders continuously produce individual virtual instances of the physical assets known as DTIs. These DTIs represent different virtual twin variants throughout the physical asset's life cycle once the asset has been built [27]. Hence, the DTI defines the physical asset's specific correspondences at any given point in time and uses it to explore the physical asset's behaviour under various what-if scenarios [35]. Data capturing sensors (i.e. laser scanners, drones, photogrammetry) often update the DTI during alternative instances [38]. Capturing the asset's actual conditions during different asset life cycle stages is beyond the scope of this text. Readers can refer to Kopsida and Brilakis [39] and Omar and Nehdi [40] for a detailed literature review of the available data-capturing solutions.
- Levels 3 and 4: Digital Twin Environment (DTEs)—Two types of DTEs exist, known as 'Adaptive DT' and 'Intelligent DT'. An Adaptive DT is a high-level DT that offers an adaptive user interface to the physical and virtual twins [35]. This user interface is sensitive to the preferences and priorities of the end-users by learning and prioritising the end-users' preferences for different instances [30][32] with supervised machine learning techniques [34]. Thus, facility managers and operators can leverage adaptive DTs for real-time planning and decision-making processes. An Intelligent DT is the most evolved version of a DT, developed with supervised and unsupervised machine learning techniques. An Intelligent DT can define assets and patterns encountered in

the operational environment by itself [31] to update itself automatically; it provide benefits and abilities beyond the explicitly defined information in the existing DT versions. This DT has the highest autonomy level, allowing it to analyse more meticulous performance and maintain data from the physical asset.

The four core parts of a DT are (1) models, (2) data, (3) connections, and (4) services. As illustrated by Arup [41], physical and digital assets are interconnected in a digital twin ecosystem. The user interacts with the DT through applied intelligence, enabling the DT to perform minimal or no-human labour tasks. The digital thread in the middle connects the physical and digital assets and can be used for 3D simulations, Internet of Things (IoT) devices, networks, cloud computing, and Artificial Intelligence (AI).

2.2. Smart City (SC)

People's perceptions of SCs differ from technological perceptions. Although the SC phenomenon is widespread around the world, its definition remains elusive. Without a universally agreed definition, the SC sector is still in the 'I know it when I see it phase', which means that there is no agreed-upon definition for a SC and defining a standard global definition has proven difficult. These definitions, on the other hand, underline universal attributes and elements that may characterise SC perceptions.

For instance, some view SCs as enriching the quality of life for a certain city segment or citizens. Galán-García et al. [42] viewed the SC as a very broad concept, including social aspects that encompass physical infrastructure, human, and societal factors. This definition was emphasised further by Neirotti et al. [43] when they defined the SC as improving citizens' quality of life, with increasing importance on policymakers' agendas. They added policymakers to the definition of SCs as an additional component. In order to achieve an enhanced quality of life for a city and its people, SCs need to be utilised by information technology hardware, software, networks, and data on different services and regions. Different city components such as natural resources, infrastructures, power, transportation, education, healthcare, government, and public safety are all incorporated into these definitions. For instance, Su et al. [44] discuss the computational element of SCs and emphasise how future-oriented computing is critical to creating this SC. Their definition of a SC involves utilising future-oriented computing capabilities in all essential services such as healthcare, power grids, transportation, buildings, and utility lines, and forming the IoT through the internet. This definition was reinforced by Kitchin [45] who discusses how a city should monitor and integrate the status of all of its major infrastructures, including land and air transportation, communications, and utilities. Chourabi et al. [46] view a SC as a future paradigm of interconnected components. Their definition for a SC explains how different components such as economy, people, governance, mobility, environment, and living can be cooperated and assembled as a smart combination of endowments and activities of self-decisive, independent, and aware citizens. It is argued that this provides a more generic view that brings together all of the main aspects of a SC, making it one of the most comprehensive definitions of a SC [21].

These definitions conclude that a SC is a holistic dwelling that smartly and efficiently connects numerous life components such as power, transportation, and buildings to improve the quality of life for its residents. Furthermore, the definitions concentrate on the future by highlighting the importance of resources and application

sustainability for future generations. The researchers observed these characteristics in every SC proposal, regardless of size, location, or available resources. It is evident that the wide landscape of SCs has eight main domains as summarised in Bellini et al. [47], that are widely used in the field of SCs such as governance, living and infrastructures, mobility and transportation, economy, industry and production, energy, environment, and healthcare. It should be noted that these eight domains are not essentially orthogonal, as they often intertwine in a variety of settings and applications.

One of the challenges of forming and sustaining a SC is the availability, size, and capabilities of such resources. Another challenge is the regulatory systems, which could have a significant impact on success. On top of that, there are technical issues that call for cutting-edge solutions. Technologies that are new and developing, on the other hand, can assist in transforming such challenges into opportunities.

2.3. Digital Twin Smart Cities (DTSC)s

Data obtained from smart city initiatives can be used to create digital twin cities [48]. The virtual version enables the simulation of spatiotemporal information in a city. A great deal of the recent advancements in global SCs has been made possible through integrating Information Communication Technology (ICT) systems into the city to make its digital replica [48][49]. A preliminary attempt to establish a DTSC was made in Singapore, also known as 'Virtual Singapore' [50]. However, this 'Virtual Singapore' had significant limitations, including the fact that the model has never been made accessible to the public, so citizens cannot engage with it or provide input, and it does not incorporate urban mobility data. A number of private companies, such as CityZenith (<https://cityzenith.com/>, accessed on 28 January 2023), Agency9, and SmarterBetterCities (<https://www.smarterbettercities.ch/>, accessed on 30 January 2023) have started to develop in the DTSC space [51]. The DTSC proposed by White et al. [52] relies on six distinct levels of data in the city. The first five levels contribute information about the city's geography, buildings, infrastructure, mobility, and IoT devices by stacking on top of each other. The smart city component gathers data from the city and sends them to the digital twin component. The data collected in the SC are used by the DT to run additional simulations on aspects such as transportation optimisation, building placement, and the design of renewable energy sources. Simulations thus play a crucial role in the implementation of DTSCs. This information is then transmitted back via the model's layers and applied in the physical world.

2.4. Disaster Risk Management

In some cultures, disasters have been viewed as an act of god, and disaster damages were considered as punishment for their misdoings [53][54][55]. This philosophy ignored natural global environmental change processes. Later, knowledge of the physical earth system directed the connection of disasters with natural hazards such as floods, earthquakes, and others [56]. People began to perceive the world more scientifically and rationally as economic growth and education progressed. Governments started to respond to disasters in a more logical and systematic manner [57]. Hazards, according to current knowledge, are not exceptional events, and many of them are centered on and reiterated in specific locations [58]. This has sparked a more philosophical debate about defining disasters as 'unnatural'. These natural hazards become disasters when humans fail to implement

appropriate preventative and preparedness actions to mitigate their effects. According to this philosophy, disasters happen as a consequence of interactions between people and the environment [59]. This is particularly the case in urban flooding, where human-induced factors such as poor land-use planning, inadequate drainage systems, and poor flood risk management practices often contribute to fatalities and infrastructure damages [60].

The state of research in disaster management reflects that the disaster management approach should shift from reactive approaches to proactive approaches with more inter-sectoral risk management [61]. The 1990s were designated as the 'International Decade for Natural Disaster Reduction' by the United Nations General Assembly in 1987. The goal of these steps was to improve preparedness potentials, minimise the impacts of disasters, and develop appropriate regulations. In 1994, the United Nations' Yokohama Strategy and Plan of Actions for a Safer World emphasised the importance of sustainable development in disaster reduction and prevention [62]. The World Conference on Disaster Reduction (WCDR) developed the Hyogo Framework for Action (HFA) in 2005, which called for strengthening nations' and communities' resilience to disasters. The HFA addressed issues such as community participation, capacity building, and early warning, as well as multi-hazard strategies to reduce deaths. The Sendai Framework for Disaster Risk Reduction (2015–30) was adopted at the United Nations' third disaster risk reduction conference [61]. This framework advocated for a paradigm shift from disaster management to risk management.

The disaster management cycle is an indispensable tool in disaster management [63]. It is intended to guide nations in mitigating the effects of disasters and has been widely used in disaster management over the past three decades [64]. It is acknowledged that the terminology used for various stages of a disaster can be traced back to the 1930s, and also some experts used such terms in humanitarian action to better understand and improve the system [65]. Professionals from different disciplines and scientific upbringings are involved in disaster risk management. This has resulted in various viewpoints and model specifications of disaster management cycle theories [64]. This cycle illustrates how various stages of disaster management involve interconnected activities [66].

The stages of the disaster risk management cycle are three-fold: (a) pre-disaster (risk reduction), (b) during the disaster, and (c) post-disaster (recovery). Pre-disaster approaches commonly include prevention, mitigation, and preparedness, whilst response approaches include rescue and relief. Recovery and development are post-disaster activities [67]. Each of these activities contributes to the reduction in the risk of physical and human losses and enhances disaster response and recovery. Alexander [58] expanded on the disaster management cycle by categorising it into two stages: pre- and post-disaster. Preparedness and mitigation were classified as pre-disaster, while response and recovery were classified as post-disaster. Yet, there are advantages and disadvantages inherent to the disaster management cycle. Furthermore, there has been a critique of disaster management's continuous cyclic nature. As a result, experts have differed on the effectiveness of the disaster management cycle [63][64]. The cycle has been modified to allow for better management in terms of time, resources, preferences, capacities or needs, and institutional transformations. Extreme events have been linked to climate change [68][69]. Recent research highlights the importance of incorporating disaster risk reduction and climate change adaptation [70][71][72]. Alternative solutions, such as panarchy [73][74], and resilience, have been proposed to explain effective

disaster coping mechanisms [75]. Nonetheless, despite its shortcomings, the disaster risk management cycle continues to be used due to its convenient and robust nature [76].

References

1. United Nations Office for Disaster Risk Reduction (UNDRR). Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022.
2. Dube, E.; Wedawatta, G.; Ginige, K. Building-Back-Better in Post-Disaster Recovery: Lessons Learnt from Cyclone Idai-Induced Floods in Zimbabwe. *Int. J. Disaster Risk Sci.* 2021, 12, 700–712.
3. United Nations. Economic Recovery after Natural Disasters. 2022. Available online: <https://www.un.org/en/chronicle/article/economic-recovery-after-natural-disasters> (accessed on 8 July 2022).
4. United Nations Office for Disaster Risk Reduction (UNDRR). Economic Impact of Natural Disasters in 2020. 2021. Available online: <https://www.preventionweb.net/news/economic-impact-natural-disasters-2020> (accessed on 12 March 2022).
5. RMS. RMS Estimates Insured Losses from Windstorms Dudley and Eunice will Likely Range between 3.0 and 4.5 Billion Euro. 2022. Available online: <https://www.rms.com/newsroom/press-releases/press-detail/2022-03-01/rms-estimates-insured-losses-from-windstorms-dudley-and-eunice-will-likely-range-between-30-and-45-billion-euro> (accessed on 8 September 2022).
6. United Nations Office for Disaster Risk Reduction (UNDRR). Human Cost of Disasters: An Overview of the Last 20 Years 2000–2019. Human Cost of Disasters; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2020.
7. Novelo-Casanova, D.A.; Suárez, G.; Cabral-Cano, E.; Fernández-Torres, E.A.; Fuentes-Mariles, O.A.; Havazli, E.; Jaimes, M.; López-Espinoza, E.D.; Martin-Del Pozzo, A.L.; Morales-Barrera, W.V.; et al. The Risk Atlas of Mexico City, Mexico: A tool for decision-making and disaster prevention. *Nat. Hazards* 2021, 111, 411–437.
8. Alhinai, Y.S. Disaster management digitally transformed: Exploring the impact and key determinants from the UK national disaster management experience. *Int. J. Disaster Risk Reduct.* 2019, 51, 101851.
9. Yu, D.; He, Z. Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: Advances, challenges, and opportunities. *Nat. Hazards* 2022, 112, 1–36.

10. Taubenböck, H.; Goseberg, N.; Lämmel, G.; Setiadi, N.; Schlurmann, T.; Nagel, K.; Siegert, F.; Birkmann, J.; Traub, K.P.; Dech, S.; et al. Risk reduction at the ‘Last-Mile’: An attempt to turn science into action by the example of Padang, Indonesia. *Nat. Hazards* 2013, 65, 915–945.
11. Alshammari, M.M.; Alwan, A.A.; Nordin, A.; Abualkishik, A.Z. Disaster Recovery with Minimum Replica Plan for Reliability Checking in Multi-Cloud. *Procedia Comput. Sci.* 2018, 130, 247–254.
12. Andriole, S.J. Five Myths About Digital Transformation. *Front. Built Environ.* 2017, 58, 109–120.
13. Asian Development Bank. Digital Technologies: For Climate Action, Disaster Resilience, and Environmental Sustainability; Asian Development Bank: Manila, Philippines, 2021.
14. Wedawatta, G.; Thurairajah, N.; Ginige, K. Foreward. In Industry 4.0 and Disaster Resilience in the Built Environment—ARCOM Doctoral Workshop In association with CIB W120—Disasters and the Built Environment; Wedawatta, G., Thurairajah, N., Ginige, K., Eds.; The Association of Researchers in Construction Management (ARCOM): Newcastle upon Tyne, UK, 2019.
15. Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. *IEEE Access* 2020, 8, 108952–108971.
16. Buckley, B.; Logan, K. SmartMarket Report The Business Value of BIM for Infrastructure; Dodge Data & Analytics: Bedford, MA, USA, 2017.
17. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. *CIRP J. Manuf. Sci. Technol.* 2020, 29, 36–52.
18. Parrott, A.; Warshaw, L. Industry 4.0 and the Digital Twin. 2017. Available online: <https://www2.deloitte.com/us/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html> (accessed on 14 October 2020).
19. Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on digital twin: Definitions, characteristics, applications, and design implications. *IEEE Access* 2019, 7, 167653–167671.
20. Hayat, P. Smart cities: A global perspective. *India Q.* 2016, 72, 177–191.
21. Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. *J. Internet Serv. Appl.* 2015, 6, 25.
22. Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. *Int. J. Distrib. Sens. Netw.* 2019, 15, 1550147719853984.
23. Cvar, N.; Trilar, J.; Kos, A.; Volk, M.; Duh, E.S. The use of iot technology in smart cities and smart villages: Similarities, differences, and future prospects. *Sensors* 2020, 20, 3897.
24. Anthopoulos, L.G. Understanding smart cities: A tool for smart government or an industrial trick? In Public Administration and Information Technology; Springer: Cham, Switzerland, 2017; Volume

22, pp. 1–293.

25. Ford, D.N.; Wolf, C.M. Smart Cities with Digital Twin Systems for Disaster Management. *J. Manag. Eng.* 2020, 36, 04020027.

26. Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E. DRAFT Modeling, Simulation, Information Technology & Processing Roadmap: Technology Area 11; NASA: Washington, DC, USA, 2010.

27. Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In *Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches*; Springer: Cham, Switzerland, 2016; pp. 85–113.

28. MarketsandMarkets. Digital Twin Market by Technology, Type (Product, Process, and System), Application (Predictive Maintenance, and Others), Industry (Aerospace & Defense, Automotive & Transportation, Healthcare, and Others), and Geography—Global Forecast to 2026; MarketsandMarkets: Hadapsar, India, 2021.

29. McKinsey & Company. Imagining Construction's Digital Future. 2016. Available online: <https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future> (accessed on 24 February 2022).

30. Alexopoulos, K.; Nikolakis, N.; Chryssolouris, G. Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. *Int. J. Comput. Integr. Manuf.* 2020, 33, 429–439.

31. Ashtari Talkhestani, B.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An architecture of an Intelligent Digital Twin in a Cyber-Physical Production System. *At-Automatisierungstechnik* 2019, 67, 762–782.

32. Bolender, T.; Bürvenich, G.; Dalibor, M.; Rumpe, B.; Wortmann, A. Self-Adaptive Manufacturing with Digital Twins. In Proceedings of the 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Madrid, Spain, 18–21 May 2021; pp. 156–166.

33. Ciano, M.P.; Pozzi, R.; Rossi, T.; Strozzi, F. Digital twin-enabled smart industrial systems: A bibliometric review. *Int. J. Comput. Integr. Manuf.* 2020, 34, 690–708.

34. Erkoyuncu, J.A.; del Amo, I.F.; Ariansyah, D.; Bulka, D.; Vrabič, R.; Roy, R. A design framework for adaptive digital twins. *CIRP Ann.* 2020, 69, 145–148.

35. Madni, A.; Madni, C.; Lucero, S. Leveraging Digital Twin Technology in Model-Based Systems Engineering. *Systems* 2019, 7, 7.

36. Maschler, B.; Braun, D.; Jazdi, N.; Weyrich, M. Transfer learning as an enabler of the intelligent digital twin. *Procedia CIRP* 2020, 100, 127–132.

37. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. *Int. J. Adv. Manuf. Technol.* **2017**, *94*, 3563–3576.

38. Gardner, P.; Dal Borgo, M.; Ruffini, V.; Hughes, A.J.; Zhu, Y.; Wagg, D.J. Towards the Development of an Operational Digital Twin. *Vibration* **2020**, *3*, 235–265.

39. Kopsida, M.; Brilakis, I. Real-Time Volume-to-Plane Comparison for Mixed Reality-Based Progress Monitoring. *J. Comput. Civ. Eng.* **2020**, *34*, 04020016.

40. Omar, T.; Nehdi, M.L. Data acquisition technologies for construction progress tracking. *Autom. Constr.* **2016**, *70*, 143–155.

41. ARUP. Digital Twin: Towards a Meaningful Framework; Arup: London, UK, 2019.

42. Galán-García, J.L.; Aguilera-Venegas, G.; Rodríguez-Cielos, P. An accelerated-time simulation for traffic flow in a smart city. *J. Comput. Appl. Math.* **2014**, *270*, 557–563.

43. Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in smart city initiatives: Some stylised facts. *Cities* **2014**, *38*, 25–36.

44. Su, K.; Li, J.; Fu, H. Smart City and the Applications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031.

45. Kitchin, R. The Real-Time City? Big Data and Smart Urbanism. *Rob. GeoJournal* **2014**, *79*, 1–14.

46. Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding smart cities: An integrative framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297.

47. Bellini, P.; Nesi, P.; Pantaleo, G. IoT-Enabled Smart Cities: A Review of Concepts, Frameworks and Key Technologies. *Appl. Sci.* **2022**, *12*, 1607.

48. Mohammadi, N.; Taylor, J.E. Devising a game theoretic approach to enable smart city digital twin analytics. In Proceedings of the 52nd Hawaii International Conference on System Sciences, HICSS 2019, Hawaii, HI, USA, 8–11 January 2019.

49. White, G.; Palade, A.; Cabrera, C.; Clarke, S. Autoencoders for QoS prediction at the Edge. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications, PerCom 2019, Kyoto, Japan, 11–15 March 2019; pp. 1–9.

50. Soon, K.H.; Khoo VH, S. Citygml modelling for Singapore 3D national mapping. *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch.* **2017**, *42*, 37–42.

51. Centre for Digital Built Britain (CDBB). National Digital Twin Programme|Centre for Digital Built Britain. 2022. Available online: <https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin->

programme (accessed on 20 August 2022).

52. White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. *Cities* 2021, 110, 103064.
53. Dodds, G.G. 'This Was No Act of God:' Disaster, Causality, and Politics. *Risk Hazards Crisis Public Policy* 2015, 6, 44–68.
54. Kulatunga UWedawatta Gamaratunga, D.; Haigh, R. Evaluation of vulnerability factors for cyclones: The case of Patuakhali, Bangladesh. *Int. J. Disaster Risk Reduct.* 2014, 9, 204–211.
55. Lutzer, E.Z. *An Act of God? Answers to Tough Questions about God's Role in Natural Disasters*; Tyndale Publishers, Inc.: Carol Stream, IL, USA, 2011.
56. Cannon, T. Reducing People 's Vulnerability to Natural Hazards: Communities and Resilience; Research Paper 2008/034; UNU-WIDER: Helsinki, Finland, 2008.
57. Sylves, R.T. *Disaster Policy and Politics: Emergency Management and Homeland Security*; SAGE Publications: Thousand Oaks, CA, USA, 2020.
58. Alexander, D. *Principles of Emergency Planning and Management*; Terra Publishing: Harpenden, UK, 2002.
59. United Nations Office for Disaster Risk Reduction. *Global Assessment Report on Disaster Risk Reduction 2015. International Strategy for Disaster Reduction (ISDR)*; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2019.
60. Sayers, P.; Galloway, G.; Penning-Rowsell, E.; Yuanyuan, L.; Fuxin, S.; Yiwei, C.; Kang, W.; Le Quesne, T.; Wang, L.; Guan, Y. Strategic flood management: Ten 'golden rules' to guide a sound approach. *Int. J. River Basin Manag.* 2015, 13, 137–151.
61. United Nations Office for Disaster Risk Reduction. *Sendai Framework for Disaster Risk Reduction 2015–2030*; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015.
62. Coppola, D.P. *Introduction to International Disaster Management*; Butterworth-Heinemann Publications: Oxford, UK, 2015.
63. Sawalha, I.H. A contemporary perspective on the disaster management cycle. *Foresight* 2020, 22, 469–482.
64. Coetzee, C.; Van Niekerk, D. Tracking the evolution of the disaster management cycle: A general system theory approach. *Jàmbá J. Disaster Risk Stud.* 2012, 4, 1–9.
65. Neal, D.M. Reconsidering the phases of disaster. *Int. J. Mass Emerg. Disasters* 1997, 15, 239–264.
66. Dewi, O.C.; Saskia, C.S.; Dewi MB, V.; Anjari, A.R.; Chairunissa, I. Fact-finding during Quick Response to Disaster: School Students' Response to the Environment. In *Proceedings of the*

2020 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, 24–26 February 2020.

67. Carter, W.N. *Disaster Management a Disaster Manager's Handbook*; Asian Development Bank: Mandaluyong, Philippines, 2008.
68. Swain, D.L.; Singh, D.; Touma, D.; Diffenbaugh, N.S. Attributing Extreme Events to Climate Change: A New Frontier in a Warming World. *One Earth* 2020, 2, 522–527.
69. Trenberth, K.E.; Fasullo, J.T.; Shepherd, T.G. Attribution of climate extreme events. *Nat. Clim. Chang.* 2015, 5, 725–730.
70. Birkmann, J.; von Teichman, K. Integrating disaster risk reduction and climate change adaptation: Key challenges-scales, knowledge, and norms. *Sustain. Sci.* 2010, 5, 171–184.
71. Rana, I.A. Disaster and climate change resilience: A bibliometric analysis. *Int. J. Disaster Risk Reduct.* 2020, 50, 101839.
72. Venton, P.; La Trobe, S.; Institute of Development Studies (IDS). *Linking Climate Change Adaptation and Disaster Risk Reduction*; Tetrafund: Teddington, UK, 2008.
73. Berkes, F.; Ross, H. Panarchy and community resilience: Sustainability science and policy implications. *Environ. Sci. Policy* 2016, 61, 185–193.
74. Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. *Nat. Hazards* 2016, 82, 175–192.
75. Manyena, B.; Machingura, F.; O'Keefe, P. Disaster Resilience Integrated Framework for Transformation (DRIFT): A new approach to theorising and operationalising resilience. *World Dev.* 2019, 123, 104587.
76. Alexander, D.E. L'Aquila, central Italy, and the 'disaster cycle', 2009–2017. *Disaster Prev. Manag. Int. J.* 2019, 28, 272–285.

Retrieved from <https://encyclopedia.pub/entry/history/show/108198>