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MicroRNAs are small non-coding RNAs, acting as post-transcriptional regula- tors of gene expression. In the last
two decades, their role in cancer as oncogenes (oncomir), as well as tumor suppressors, has been extensively
demonstrated. Recently, epitranscriptomics, namely the study of RNA modifications, has emerged as a new field of
great interest, being an additional layer in the regulation of gene expression. Almost all classes of eukaryotic RNAs,
including miRNAs, undergo epitranscriptomic modifications. Alterations of RNA modification pathways have been

de- scribed for many diseases—in patrticular, in the context of malignancies.

microRNA cancer epitranscriptomics mM6A m5C A-to-l editing m7G

| 1. Introduction

MicroRNAs (miRNAs) are a class of short, non-coding RNAs that control gene expression at the post-

transcriptional level via either translational repression or mMRNA degradation.

Since MiRNAs act as pervasive regulators of gene expression, it is not surprising that they were involved in normal
animal development and in a variety of biological processes W&, The aberrant expression of miRNAs is also

associated with many human diseases B4,

One hundred and seventy-two post-transcriptional modifications of RNAs have been reported thus far [,
collectively known as the “epitranscriptome” . Some of these epitranscriptomic modifications have been
thoroughly investigated, unraveling their contribution to RNA stability and/or activity B8, The most common and
best-characterized epitranscriptomic modifications include N6-methyl-Adenosine (m6A) 19, pseudoUridine (W) L1,
Adenosine-to-Inosine (A-to-1) editing 12 and 5-methyl-Cytidine (m5C) 131,

In epigenetics, a widely exploited paradigm postulates that DNA methylation and histone modifications are installed
by “writer” enzymes, recruit “reader” proteins and are removed by “eraser” enzymes 14 Although it has been
proposed that the same general view may hold true for epitranscriptomic modifications, the intrinsic features of
RNA imply that “readers” and “erasers” may be dispensable for some modifications 3. “Writer” enzymes have
been identified for all major RNA modifications L8II7IL8IL201121]  Otherwise, “reader” proteins have been described
only for m6A 22 and m5C [23]. Several RNA modifications directly affect the RNA structure and/or base pairing,
thus requiring no “reader” proteins to exert their functions. This is obvious for A-to-1 editing, which changes the

identity of a base, and it has also been demonstrated for W 24123 Fyrthermore, while it has been suggested that
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m6A can be removed from modified RNA molecules 2827 most epitranscriptomic modifications are apparently not
dynamic. On the one hand, because of the very short half-life of most eukaryotic RNAs, specific “eraser” enzymes
might be dispensable at least for some epitranscriptomic modifications that may actually be removed through the
rapid turnover of modified RNA molecules. On the other hand, epitranscriptomic modifications on more stable RNA
molecules (e.g., rRNAs) may lack any “eraser” enzymes simply because reverting such modifications is not
beneficial to the cell. Accordingly, no “eraser” enzyme has been identified yet for m5C, W, A-to-I editing and many

other epitranscriptomic modifications 281291,

| 2. miRNASs: Biogenesis and Functions

mMiRNAs are a class of small (18-24 nt) non-coding RNAs that are processed from long primary miRNAs (pri-
miRNAs) generally transcribed by RNA Polymerase 1l BYB1E2 and harbor one or more hairpin structure £81, Pri-
MiRNA processing starts in the nucleus, where the Microprocessor complex, formed by the RNase Il enzyme
DROSHA, the RNA-binding protein Di George Syndrome Critical Region Gene 8 (DGCRS8) and other proteins 24

[33] catalyzes the endonucleolytic cleavage of the pri-miRNA to yield a ~70-nt-long hairpin pre-miRNA 28],

Pre-miRNAs are then exported to the cytoplasm by Exportin-5 E7B8I39] |n the cytoplasm, pre-miRNAs undergo
further cleavage by DICER, which removes the terminal loop of the hairpin to yield a duplex consisting of the
mature miRNA (guide strand) base-paired to the passenger strand [2941],

The mature miRNA within RISC recruits the complex onto target RNA molecules by base-pairing between a “seed”
region (nt 2-7) at the 5' end of the miRNA and the 3' UTR of the target RNA 42l43l44]  |eading to gene silencing

through translation repression and mRNA decay.

MiRNAs patrticipate in gene regulatory networks that control diverse biological processes in multicellular organisms,
such as animal development (reviewed in reference 1), cell fate specification and differentiation 2, the immune
response 48 and inflammation [4Z. Changes in the miRNA expression levels have been associated with a wide
range of human diseases, including diabetes, cardiovascular and kidney disease and cancer B4, A huge number
of mMiRNAs are downregulated or upregulated in human cancers, where they exert oncogenic or tumor suppressor
functions, depending on the cellular context. Alterations of miRNAs in different malignancies have been linked to
genetic deletion or amplification, as well as to DNA methylation of the miRNA genomic loci, to the modulation of the
pri-mRNA transcription level by transcription factors or to the dysregulation of one or more steps in miRNA
biogenesis (reviewed in reference 48). Recently, epitranscriptomics is emerging as an additional layer of the

regulation of the miRNA function in cancer.

| 3. Epitranscriptomic Modifications of miRNA in Cancer

3.1. N6-Methyl-Adenosine (m6A)

m6A was first reported in the 1970s in mammalian RNAs BBYBL A full comprehension of the role of this

modification took several decades. In 1997, the protein Methyltransferase-like (METTL) 3 was identified as the first
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“writer” of m6A in mammalian cells 29, Further investigations have shown that m6A is installed by a nuclear
complex comprised of METTL3, METTL14 and WT1-Associated Protein (WTAP) 22, Further components of this

complex include KIAA1429, RNA Binding Motif Protein 15 (RBM15) and Zinc Finger CCCH-Type Containing 13
(ZC3H13) (23],

Several members belonging to the YTH (YT521-B homology) family, such as human YT521-B (also known as
YTHDC1), YTHDC2, YTHDF1, YTHDF2 and YTHDF3, have been identified as m6A-binding or “reader” proteins (2!
(22 The members belonging to the DF family likely confine m6A-modified RNAs in specific cytoplasmic liquid—liquid

phase separation compartments (2!,

Several other “reader” proteins have been shown to bind m6A-modified RNAs thanks to a so-called “m6A switch”
(581 Indeed, m6A installation may trigger a conformational switch that allows the binding of these “reader” proteins,
which, in fact, do not directly bind to the m6A residue itself 29, This mechanism is exploited by several members of
the hnRNP (heterogeneous nuclear ribonucleoprotein) family. Finally, insulin-like growth factor 2 mRNA-binding

proteins (IGF2BP) were also reported to bind m6A-modified RNAs, promoting their stability B2,

Although two enzymes able to “erase” m6A from mammalian RNAs have been reported, i.e., FTO Alpha-
Ketoglutarate-Dependent Dioxygenase (FTO) and AlkB Homolog 5, RNA Demethylase (ALKBH5) 28127 the

specificity and the relevance of these enzymes in physiological conditions are still a matter of debate 58,

About 0.1-0.4% of all adenosines in global cellular RNAs are modified as m6A, and this modification accounts for
~50% of all methylated ribonucleotides 42, m6A was found in all classes of cellular RNAs: mRNAs (in particular, in
long internal exons, locations upstream of stop codons and the 3'-UTR regions) (225969 rihosomal RNAs; transfer
RNAs and various non-coding RNAs [61I[621(63]

In cancer, the relevancy of m6A in miRNA maturation was first unveiled for miR-126 in hepatocellular carcinoma
(HCC) [&4],

From that moment on, increasing evidence has disclosed the relevance of the m6A modification of miRNA in
cancer progression. Most of the literature confirms that m6A mainly promotes pri-miRNA processing and that the
deregulation of the enzymes involved in writing or reading m6A is correlated with tumor onset. Notably, alteration of
the m6A deposition on miRNAs is not only a common feature of different tumors but also participates in

tumorigenesis processes (Figure 1 and Table 1).
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Figure 1. Epitranscriptomic modification impacts on miRNA processing and activity. m6A, A-to-l editing, m5C and

m7G can affect different steps of miRNA biogenesis, including Microprocessor cleavage, Dicer cleavage and RISC

loading or alter target recognition and binding.

Table 1. Effects of m6A modification of miRNAs in cancer.

mM6A-  Increase/

Modified Effects on miRNA _
Cancer Type ) ] Effects on Tumor Progression Reference
Decrease Processing/Function
MiRNA(s) !
Colorectal Up-regulation of mature of miR-
Cancer miR- ) 1246 results in the reduction of oe
1 processing o [65]
1246 SPRED2, thus activating the
RAF/MEK/ERK pathway
. . . . [66]
miR-375 ! processing Down-regulation of mature miR-

375 increases the expression of its
targets YAP1 and SP1 thus
increasing proliferation, and

migration and invasion
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mM6A-  Increase/

Modified Effects on miRNA _
Cancer Type ) ) Effects on Tumor Progression Reference
Decrease Processing/Function

mMIRNA(S) 1

miR-
483, miR-483, miR-676 and miR-877
] modulate mitochondrial metabolism 67]
) n.d. processing )
miR-676 by targeting electron transport
chain genes
miR-877
miR-17-
Sp
1 Binding to targets n.d. [68]
let-7a-
Sp
) Up-regulation of mature miR-25-3p
miR-25- ) ) ) (69]
. ) processing results in the reduction of PHLPP2,
p . o
leading to AKT activation.
Pancreatic
cancer miR-17-
Sp
1 Binding to targets n.d. [68]
let-7a-
5p
Down-regulation of mature miR-
Hepatocellular ) ) ) (64]
_ miR-126 ! processing 126 which acts as a tumor
Carcinoma
suppressor
- Up-regulation of mature miR-
miR-
Bladder cancer 1 processing 221/222 results in the reduction of (rol
221/222

PTEN, leading to proliferation
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mM6A-  Increase/

Modified Effects on miRNA _
Cancer Type ) ) Effects on Tumor Progression Reference
Decrease Processing/Function

mMIRNA(S) 1

Up-regulation of mature miRNA-92

Gallbladder mMiRNA- _ ) _ -
) processing results in the reduction of PTEN, (]
cancer 92 o ) )
thus activating PI3K/AKT signaling
Up-regulation of mature miR-126-
] ] ) 5p results in the reduction of PTEN, =
Ovarian cancer miR-126 1 processing o [z2]
thus activating the PISK/Akt/mTOR
pathway
1 y Related
miR-17 4 Domain
5p sohibin 1.
Gastric cancer 1 Binding to targets n.d. [68]
let-7a-
Sp
Acting on
2] )AR2 and
[75] Up-regulation of mature miR-143-
Lung cancer . 3p promotes the metastatic
miR-
(brain 143-3p 1 processing potential of lung cantt via (3] imperfect
metastasis) regulation of angiogenesis and e case of
microtubules through VASH1 [77][781[79]

Inosine is recognized by the cellular machinery as guanosine, causing a change in the RNA sequence. As a
consequence, depending on the modification site, this type of RNA editing can influence the RNA stability [8QJ[81][82]
splicing [B3IB4IES] |ocalization and translation, as well as redefine its interactions with specific factors E8IEZ. |n

mRNAs, the modification of A-to-l can lead to a codon change, thus affecting the primary structure of the encoded
protein (8189

A-to-l editing mainly targets noncoding regions of RNA, such as introns and UTRs, containing repetitive Alu

elements and Long Interspersed Elements (LINES) that fold into dsRNA structures recognized by ADARs [29]

In most types of cancer, the activity of ADAR enzymes is significantly decreased, as witnessed by the extensive

hypoediting of Alu RNAs, as well as by the reduced expression of ADAR enzymes 211,

The first evidence of the editing of a miRNA was shown in 2004 by Luciano and colleagues B2 \who reported A-to-I

conversion within the miR-22 precursor in Homo sapiens and Mus musculus. Soon after, it was shown that the A-
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to-1 editing of pri-miR-142 prevents processing by DROSHA 23l ADAR enzymes have a degree of specificity for
different miRNA precursors, depending on their secondary structure 24, The ADAR1 interaction with DICER was
associated with enhanced miRNA processing in oral squamous cells carcinoma 22! and in melanoma 28, although,
in both cases, the authors did not assess the editing of the miRNA precursors. Furthermore, ADAR editing has
been shown to affect the DICER-dependent processing of viral miRNAs 4. Of note, ADARSs can also alter miRNA

metabolism independently from their editing activity [28][991[100],

Several examples showed that the A-to-l editing of miRNA precursors inhibits the biogenesis of mature miRNAs
or alters the selection of miRNA targets (Figure 1 and Table 2). The deregulation of ADAR1 and/or ADAR2 in
glioblastoma and in chordoma affects the expression levels of miR-21, miR-221 and miR-222 294 and of miR-10a
and miR-125a 202 respectively. Furthermore, the impairment of let-7 biogenesis by means of ADAR1-mediated A-
to-1 editing drives leukemia stem cells renewal 2931, In thyroid cancer, the slight overexpression of ADAR1
corresponds to a higher expression of ZEB1, a master regulator of Epithelial-Mes- enchymal
Transition (EMT). It has been demonstrated that editing of the seed sequence of miR-200b by

ADAR1 impairs its ability to inhibit ZEB1 expression, favoring the progression of the cancer [104I[105],

Table 2. Effects of A-to-I editing of miRNAs in cancer.

A-to-lI-  Increase/

Modified Effects on miRNA )
Cancer . . Effects on Tumor Progression Reference
Decrease Processing/Function

MIRNA(S) 1

Glioma Unedited miR-376a-5p promotes
mir- o aggressive glioma growth, by its ability
! Binding to targets ) [106]
376a-5p to target RAP2A and concomitant

inability to target AMFR

Up-regulation of mature miR-221/222

miR-
and miR-21 results in the repression of
221/222 : . . [101]
! processing its targets p27Kipl and PDCD4, thus
increasing proliferation and migration of
miR-21 g ¢
glioblastoma
miR- ! Binding to targets Editing within miR-589-3p retargets the [or
589-3p miRNA from the protocadherin PCDH9

to the metalloprotease ADAM12, which
is involved in glioblastoma cell

invasion.
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A-to-l-  Increase/

Modified Effects on miRNA _
Cancer . . Effects on Tumor Progression Reference
Decrease Processing/Function

MIRNA(S) !

Unedited miR-455-5p but not the edited
miR- form targets the tumor suppressor
! Binding to targets ¢ F)p [108]
455-5p gene CPEBL1, thus promoting tumor

growth and metastasis

Metanoma
Edited miR-378a-3p but not the
] unedited form specifically targets the
miR- - ; 109]
S— Binding to targets PARVA oncogene, thus preventing the
a-sp .
progression of melanoma towards the
malignant phenotype
miR-10a . . .
Down-regulation of miR-10a and miR-
Chordoma miR 1 processing 125a expression and upregulates [102]
expression of their target genes
125a P g
Chronic Down-regulation of mature let-7 results
myeloid let-7 ) processing in increased LIN28B expression and i
leukemia enhanced self-renewal
Edited miR-200b has weakened activity
Thyroid miR- o against its target gene ZEB1, an
1 Binding to targets - - (L05]
cancer 200b epithelial-mesenchymal transition
(EMT) marker )
i 2d Protein
adherin 9;
Edited miR-381 enhances the growth Protein 1;
Lung cancer miR-381 ) n.d. of non-small-cell lung cancer cells as [110]

compared to the unedited form

m5C is one of the most representative post-transcriptional RNA modifications 21 and it has long been known to

be present in all three kingdoms of life [112](113]
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m5C was originally reported in tRNAs, rRNAs B2 and coding RNAs 114!: |ater, it was identified in other noncoding

RNAs, thanks to technologies such as bisulfite treatment and Next-Generation Sequencing (NGS) [L15][116][117]

The synthesis of m5C is catalyzed by the seven members of the NOL1/NOP2/SUN domain (NSUN) family of
methyltransferases 118 or by DNA methyltransferase-2 (DNMT2) 119, These enzymes are responsibles for the
methylation of rRNAs, tRNAs [1201121][122][123][124] ' jnRNAs [123126]127] ' |ncRNAs 1281 vault-RNAs 222 enhancer-

RNAs [116] mjtochondrial tRNAMet 239 and mitochondrial 12S rRNA 1311,

In vitro and in vivo studies have demonstrated that aly/REF nuclear factor (ALYREF) is a putative “reader” of m5C
sites on mMRNAs and that, following the knockdown of NSUN2, ALYREF loses its RNA-binding ability and is
retained in the nucleus, suggesting a role for m5C in mRNA exports from the nucleus 231, A further m5C “reader” is
Y-Box-Binding Protein 1 (YBX1) that recognizes and binds m5C-modified mRNAs and stabilizes their target
mRNAs by recruiting ELAV-like Protein 1 (ELAVL1) [132]1133]

m5C “writers” and “readers” are primarily implicated in fundamental cancer-related processes such as cell
differentiation, motility 134111351 proliferation (23811371 cell cycle progression 138 and senescence [128],

In particular, NSUN2 is aberrantly expressed and plays important roles in the development and pathogenesis of

different types of tumors, such as breast, colorectal, lung, skin, ovarian and bladder cancers 139,

The distribution of m5C in small RNAs is poorly understood so far; nevertheless, this modification has been
recently highlighted in vault RNAs (VtRNAs) 129 piwi-associated RNAs (piRNAs) 149 and miRNAs [681[141]142]

m5C deposition regulates the processing of vault ncRNAs into small vault RNAs (svRNAs) [122][143]

m5C has been only recently characterized in miRNAs. Interestingly, methylation, but not an abundance of miR-
200c-3p and miR-21-3p, was increased in pancreatic and colorectal cancer tissues, as well as in serum samples
from pancreatic and colorectal cancer patients 68 (Figure 1 and Table 3).

Recently, we described that m5C is widely spread in human miRNAs in various sequence contexts by taking
advantage of a novel NGS analysis of bisulfite-treated small RNAs (BS-miRNA-seq) 142, In this context, not only
the presence of m5C but, also, of hm5C on several miRNAs in human cancer cell lines was
unraveled.

Table 3. Effects of m5C and m7G modifications of miRNAS in cancer.

Increase/

Modified .
Effects on miRNA )
Cancer Effects on Tumor Progression  Reference

Processing/Function
MIRNA(S) Decrlease g

Glioma MiRNA- 1 Binding to targets Cytosine-methylated miRNA- (1401

181a-5p 181a-5p loses its ability to target
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Increase/

Modified .
Effects on miRNA )
Cancer Effects on Tumor Progression  Reference

Processing/Function
MIRNA(S) Decrlease g

(m5C) the mRNA of the pro-apoptotic
protein BIM
miR-
Colorectal 2L
cancer; gastric
¢ miR-21- 1 Binding to targets n.d. (]
cancer;
: 3p
pancreatic cancer
(m5C)
let-7
famil ) m7G methylation within miRNAs
Lung cancer y n.d. processing Y o [L44]
regulates cell migration
(m7G)
Down-regulation of mature let-7e
let-7e results in the activation of its
Colon cancer ! processing targets HMGAZ2 thus stimulating 145]
1 (m7G) colon cancer cell viability and lity Group

mobility

3.4. N7-Methylguanosine (m7G)

m7G is a positively charged modification installed cotranscriptionally at the 5’ Caps of eukaryotic mRNAs [148] This
modification protects and stabilizes transcripts from exonucleolytic degradation 144 and influences all the events

responsible for the processing of the mRNA molecules, from transcript elongation to translation [148]149],

Notably, the presence of internal m7G sites was found not only in tRNA and rRNA molecules [220151I152] hyt also in
mammalian mRNAs 122 |nternal m7G could affect mRNA translation, and this modification typically occurs near
the start and stop codons in a GA-enriched motif 153,

The enzyme responsible for this internal m7G modification is METTL1, which cooperates with the cofactor WD
Repeat Domain 4 (WDR4) 15311154 |nterestingly, METTL1 has been linked to tumor vascular invasion and poor

prognosis in hepatocellular carcinoma [2441155]
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Recently, by high-throughput screening, several miRNAs were identified as harboring internal m7G sites 1561, |n
particular, METTL1-dependent m7G was discovered in a subset of tumor-suppressor miRNAs involved in the
inhibition of cell migration, including the let-7 family. METTL1-mediated m7G occurs on pri-miRNA within G-rich
regions that display the propensity to form G-quadruplexes, i.e., structures known to be inhibitory to miRNA
processing [14311571158] (Figure 1 and Table 3).

Indeed, m7G in the let-7 family affects G-quadruplex formations, thus facilitating the formation of a canonical stem-
loop structure and miRNA processing 2281, In line with this study, Liu and colleagues showed that, in colon cancer,
the downregulation of METTL1 leads to a decrease in the let-7e levels. The alteration of let-7e expression affects

its downstream target High Mobility Group AT-hook 2 (HMGAZ2), thus promoting cell proliferation, invasion and EMT
159
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