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The advancement of micro-electro-mechanical systems and small-sized optical components enable the fabrication
of imaging devices with promising performance as compared to the traditional medical devices. Such devices
enable the detection of lesions/tumors at an earlier stage and act as a guide during surgical procedures, increasing

diagnostic capabilities. A variety of different imaging techniques used in medical applications are reviewed in here.

optical scanners medical imaging MEMS actuators OCT confocal non-linear

photoacoustic endoscopy

| 1. Introduction

The growth and development of optical components and, in particular, the miniaturization of micro-electro-
mechanical systems (MEMSSs), has motivated and enabled researchers to design smaller and smaller endoscopes.
The overarching goal of this work has been to image smaller previously inaccessible luminal organs in real time, at
high resolution, in a minimally invasive manner that does not compromise the comfort of the subject, nor introduce
additional risk. Thus, an initial diagnosis can be made, or a small precancerous lesion may be detected, in a small-
diameter luminal organ that would not have otherwise been possible. Continuous advancement in the field has

enabled a wide range of optical scanners.

| 2. Imaging Technologies

Imaging devices used in medical applications are characterized by their resolution. Non-invasive technologies,
such as MRI, CT, and ultrasound, provide in vivo imaging of tissue structures with a large penetration depth, but
the resolution is limited. Endoscopic imaging permits imaging body structures with finer details, however, they are
invasive in some cases. Fiber optics allow the fabrication of imaging devices that are flexible and can image the
target area via hollow cavities. The recent advances in the optical and mechanical fields allow in vivo imaging of

tissue surfaces to be performed by using devices having a very fine resolution at the micrometer level.

In an endoscopic optical imaging device, the laser light is illuminated on the target surface using an optical fiber or
by deviating the light by micro mirrors. The image can be either reconstructed by direct reflectance, or via detection
of the fluorescence light using optical fibers, lenses, or CCD/CMOS cameras. In the case of direct reflectance
imaging, the morphological information of the tissue structure is obtained, while fluorescence provides information

about the inner cell or tissue structures by labelling them using fluorophores. Fluorophore materials are usually
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added from outside to stain the target sample and emit light at a wavelength higher than that of illumination,

increasing the contrast in the images.

In biomedical imaging devices, OCT is one of the most used techniques. OCT is a direct reflectance imaging
technigue where the imaging contrast is provided by the change in the refractive index of the tissue media causing
a variation of intensity of the reflected light!tl. Most of the current OCT systems are FD-OCT based, where the
information about the depth scan is calculated by using the inverse Fourier transform of the backscattered light
spectrum. The fast-axial scanning is obtained by sweeping the light source, which gives high-resolution images
due to fast signal acquisition and provides images with a large signal to noise ratio. Given the current state of the
art, ophthalmology is the predominating application for OCT due to the low laser output compatible with the
ophthalmological structures permitting the imaging without damaging the tissue structuresBI4l The transparency
and low light scattering of the aqueous humor media allows imaging of the ocular surfaces at a greater depth with
resolution independent of the surface depth. In addition to ophthalmology, deep tissue penetration and high
resolution morphological and functional imaging make OCT a promising technology to assess the artery lumens in
cardiology®, tissue structures of the biliary tract, and the gastrointestinal (Gl) tract, especially for Barrett's
esophagusl®. Furthermore, the skin is a highly light-scattering tissue that contains a large number of
inhomogeneities. OCT makes it possible to detect and diagnose various skin diseases and lesions. OCT is also a

useful method to monitor lesions in the enamel and dental structures of the teethl&l.

Another promising technology is confocal microscopy, which provides high-resolution imaging of thick specimens
by virtually slicing them using optical sectioning!®. It is possible to image the tissue structures in either confocal or
fluorescence mode. In the latter case, the target tissue structure is stained using fluorescent dyes to enhance the
contrast in the image. Combining confocal microscopy with the optical fibers in a fibered confocal fluorescence
microscopy (FCFM), Cell-viZio-developed mini optical probes can be used for microcirculation imaging of the
stomach, ear, mesentery, kidney, and conjunctive tissues(2. Other applications of confocal endomicroscopy include
functional imaging of the Gl tractl??, liver, pancreas, and reproductive tracts after the application of a fluorescent
agent that provides contrast to the imagelt1l,

In addition to OCT and confocal microscopy, nonlinear microscopy also finds many applications in tissue structure
imaging. Nonlinear microscopy comprises multiphoton imaging, higher order harmonic generation, and coherent
Raman scattering microscopy. These techniques allow the structural and chemical changes of cells, tissues, or
organs to be inspected with deep tissue penetration and minimal photobleaching and phototoxicity. The use of a
pinhole and the signal generation from only a localized specific area provide high-contrast images. The cellular
level resolution allows these techniques to be used for imaging and diagnosing tumors at early stages in the skin
and ovary. In particular, TPEF is used to image endothelial cells, while SHG is used to image collagen fibers, and
CARS is used for the detection of chemical changes at the cellular levelsi22,

Another technique is photoacoustic imaging. In this case, laser pulses are emitted towards the target tissue
surface, which absorbs the light and generates an ultrasonic emission detected by an ultrasonic transducer. Thus,

the imaging contrast is based on the absorption spectra of the media. These devices find applications in measuring
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the oxygen level in the blood and guiding surgical tools during surgical procedures. Furthermore, photoacoustic
imaging is particularly suitable to image the breast, brain, and Gl tract for cancer diagnosis due to the high optical

absorption contrast(22I4],

Apart from imaging techniques, optical devices can monitor the target sample either from a side of the distal end
perpendicular to its axis, or from the front end of the device providing a peripheric or en face image, respectively. In
side-viewing devices, the probe is rotated to visualize the circumferential structural area. A forward-viewing imaging
probe provides an image of the front surface and can be used as a guide for surgical procedures. It should be
noted that forward-viewing imaging requires a transverse scan of the light beam, which poses challenges in the

miniaturization of the imaging device.

In advanced imaging systems, the resolution of images is improved by scanning the laser beam across the
surface. Often the systems are vibrated at resonance to get maximum light displacement at the distal end of the
scanner. Since it is difficult to get resonant scanners for applications requiring low-frequency scanning, imaging
devices based on the use of non-resonant or semi-resonant frequencies have been developed for this specific

requirement.

Optical fibers are mainly actuated using electrostatic, electrothermal, piezoelectric, electromagnetic, or shape
memory alloys. The electrostatic actuators are easy to fabricate and rapidly responsive but have a limited scanning
range and moderate actuation force. On the other hand, electrothermal actuators can be made in very small
dimensions and can provide large forces. In this case, they can actuate at very high frequencies, but the heat
dissipation can compromise the material performance. Piezoelectric actuators are widely used in optical fiber
endoscopes because of their fast response. However, the manufacturing of very small-sized endoscopes based on
these actuators pose some challenges. The electromagnetic and shape memory alloy actuators are better suited

for larger dimensional scales.

Base on the type of the actuator and power/voltage profile provided as the input, it is possible to generate 2-D
scanning patterns in a raster, spiral, Lissajous, circular, or propeller shape. Raster and Lissajous patterns provide
uniform light intensity within the light scanning area. The spiral pattern is easy to obtain but has more light intensity
in the center compared to the edges. Each pattern has its own advantages and disadvantages. Table 1

summarizes the pros and cons of the different scanning patterns in detail.

Table 1. Comparison table for different scanning patterns

Raster Spiral Lissajous Circular Propeller

Scanning

pattern
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A descriptive summary of some recently developed optical imaging devices for medical purposes using a variety of
different imaging techniques, configurations, actuating methods, and scanning patterns is shown in Table 2. The
scanning catheter developed by Aguirre et al. is a side-viewing OCT endoscope, where the light is transported to
the distal end using an SMF, and the forward mirror used to deflect the light is vibrated at resonance using angular
vertical electrostatic comb drives and generates a raster scanning patterni22. Park et al. developed a forward-
viewing spectral domain OCT endomicroscope. In this case, an SMF is excited at resonance using piezoelectric
tube actuators and describes a Lissajous scanning patternl2€, Myaing et al. reported a forward-viewing two-photon
fluorescence microscope. A double clad fiber (DCF) is used to deliver light to the target sample and collect the
fluorescence signal. The spiral pattern is generated by the fiber tip using a piezoelectric actuator exciting the tip at
resonancelll. Recently, Li et al. developed a 2.4-mm confocal endomicroscope using electrostatic actuators for
laser light scanning. Such a probe with a 1.5-um lateral and 12-um axial resolution is compatible with the finer
operating channel of current endoscopes(i?,
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Table 2. Comparison of some advanced optical scanning devices.
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devices are better at imaging the tissue surface by illuminating the light from the side of the probe, while others are
designed for direct en face imaging. In addition, the selection of an imaging device for a medical purpose is also
based on the size, the usage simplicity, and the ergonomics of the device. Another relevant consideration for
endoscopic devices is their suitability for reprocessing; that is their suitability multiple uses. Reprocessing, which
generally requires washing optical devices using chemicals to reduce risks of infection, can be a very expensive
process. Endoscopes should also be mechanically robust; the handling of the endoscopes during reprocessing
may damage the endoscopes. For example, a small crack could be initiated, leading to light leakage and the

consequent considerable degradation of the performance of the device.
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