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CO  methanation has recently emerged as a process that targets the reduction in anthropogenic CO  emissions,

via the conversion of CO  captured from point and mobile sources, as well as H  produced from renewables into

CH . Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be

among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural

abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle

sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome

via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-

based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new

high-performing and low-cost methanation catalysts can be obtained.

CO2 methanation  bimetallic catalysts  Ni-based catalysts  promoters  alloy nanoparticles

bimetallic synergy

1. Introduction

During the last hundred years, rapid industrialization and the high energy demands of our society have disrupted

the carbon cycle through ever increasing greenhouse gas emissions, and the ramp-up of renewable energy

production has yet to offset the negative effects on our planet’s climate and ecosystems . However, progress

made in hydrogen production technologies through water electrolysis has raised hopes for the utilization of this

green fuel that produces no CO  emissions upon its combustion , despite the fact that its storage and

transportation remain challenging when compared to other traditional energy carriers, such as natural gas . In the

last decade, research efforts have been focused on the development of catalysts that can utilize this excess

renewable hydrogen in order to hydrogenate CO  released from industrial flue gases. This way, H  can be

transformed into a reliable energy carrier, that is, CH  or synthetic natural gas (SNG), with a significantly higher

energy density, all the while creating a closed carbon cycle . The complete hydrogenation of CO  into CH , or

CO  methanation, is also known as the Sabatier reaction and is an exothermic reaction with the following equation:

Ni has become a favourite active metal for this reaction, since its high methanation activity, low cost and natural

abundance render it attractive for industrial-scale applications . Since CH  yield peaks at a relatively low
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temperature (300–400 °C, depending on the reaction conditions) , structural degradation of Ni-based catalysts,

though not completely avoided, plays a minor role compared to other reactions (e.g., methane dry reforming) .

The choice of the metal oxide support also appears to be of great importance in the performance of Ni-based

catalysts . Ni/CeO  catalysts, for example, are much more active compared to Ni/Al O  or Ni/SiO  catalysts.

This is mainly attributed to ceria’s intricate redox and O -defect chemistry, with it being able to transport oxygen

species and oxygen ion vacancies throughout its lattice, having higher basicity compared to other metal oxides that

favours CO  chemisorption and activation, as well as exhibiting a strong metal–support interaction that favours a

higher Ni dispersion .

The activity of Ni-based catalysts can be further improved via modification of the metal oxide supports. For

example, alkali and alkaline earth metals , transition metals and rare-earth metals  can be used as promoters

that modify the physicochemical properties of metal oxide supports. In some cases, these ions can enter the lattice

of the metal oxide supports (e.g., Ca  ions in CeO  and ZrO  lattices) , or form segregated metal oxide phases

supported on the support surface (e.g., La O , CeO  and MnO  in Al O ) . Such modifications can lead to an

increase in support basicity, so that the initial step of CO  chemisorption step is accelerated, or to an increase in

the active metal dispersion . In most cases, the low-temperature activity and stability of Ni-based catalysts is

enhanced following modification of the metal oxide supports.

Besides Ni, Ru and Rh noble metals have been extensively studied as active metallic phases in CO  methanation

and they usually achieve a much higher activity at low temperatures . Since CH  is thermodynamically

favoured over other CO  hydrogenation products such as CO, at low temperatures, CH  selectivity can be

significantly higher when using noble metal catalysts. Among the two noble metals, Ru can achieve higher activity

and its price is considerably lower compared to Rh, while it can also provide significant methanation activity when

supported on cheap supports (e.g., Al O  or TiO ) at a metal loading as low as 1% or even 0.5% . Ru is also

preferable to Ni for application in the combined capture and methanation of CO  derived from industrial flue-gases

since the high reducibility of RuO  oxides allows for isothermal operation at low temperatures .

A popular method to counter some of the drawbacks of Ni-based catalysts is to use a second metal (e.g., Fe, Co or

Ru) as a dopant, in order to create appropriate bimetallic CO  methanation catalysts. Such an approach has been

successfully employed in other reactions. For example, NiFe alloys are active and stable catalysts for dry reforming

of methane, since Fe can promote carbon gasification and significantly reduce coking through an intricate

dealloying and realloying mechanism . The combination of Ni with other metals can either lead to the formation

of Ni-M alloys, or monometallic heterostructures with closely located active metallic Ni-M phases . There are two

types of metals that are used in such Ni-M bimetallic catalysts, the one an early transition metal such as Fe and Co

and the other a noble metal, namely Ru, Rh, Pt, Pd and Re.

Fe and Co can easily dissolve into the Ni lattice due to the similar crystallographic properties of the corresponding

metallic phases. In the example of Fe, the dissolution of Fe atoms into the Ni lattice leads to the formation of NiFe

alloys, with Ni Fe being the most thermodynamically stable . The introduction of Fe causes an expansion of

the Ni fcc lattice up to a specific Fe amount and a shift of the (111) Ni reflection in XRD towards lower 2θ values. At
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higher Fe contents, the lattice becomes Fe rich and switches to the more compact bcc structure of pure Fe . The

introduction of the dopant metal can be used to tailor the electronic properties of Ni, so that the new alloy phase

can achieve superior activity compared to monometallic Ni. This can also lead to a higher dispersion, stability

and/or resistance towards deactivation. The application of computational methods has shown that specific alloys

can lower the M-CO binding energy and lead to higher CO methanation activities .

Noble metals Ru, Rh, Pt, Pd and Re can increase the reaction activity by enhancing the reducibility of the primary

Ni phase, by increasing the Ni dispersion, or by changing the reaction pathway . Ru and Ni mostly form

monometallic heterostructures that rely on the synergistic effect between the two separate metallic phases, while

Pt and Pd mostly lead to the creation of NiPt and NiPd alloys . It has been shown that an addition of only a

miniscule amount of noble metal (e.g., 0.5% or 1%) can greatly enhance the reducibility and low-temperature

activity of Ni-based catalysts without the need to use high loadings of precious metals .

2. Promotion with Transition Metals and Noble Metals

The race for the development of low-cost and high-performing CO  methanation catalysts thus stems from the

need to efficiently convert excess electricity and H  generated from renewables, as well as CO  captured from flue

gases, into a reliable energy carrier. Ni is the standard option to be used in CO  methanation catalysts, due to its

high activity and low cost. However, insufficient low-temperature activity and the degradation of Ni catalysts over

time due to oxidation and sintering creates the need for the employment of specific metal additives to counter such

drawbacks. These additives can fall in two generalized categories: other transition metals (including Fe and Co)

and noble metals (including Ru, Rh, Pt, Pd and Re).

The transition metals Fe and Co offer the obvious advantage of being cheap like Ni and their similar size and

electronic properties allow for their intricate interaction with the Ni primary phase and their easy dissolution into the

Ni lattice, forming NiFe and NiCo alloys, respectively. The composition of the formed alloy is of great importance,

since only specific bimetallic combinations can lead to an optimal CO  methanation performance, especially in the

case of NiFe alloys. The combined bimetallic catalysts can also offer additional advantages, such as higher

stability, as well as resistance towards oxidation and sulphur poisoning.

Noble metals generally increase the reducibility and dispersion of the Ni primary phase and they can also

participate in the reaction as active CO  methanation phases. Stand-alone Ru catalysts are highly active for low-

temperature CO  methanation and the presence of Ru in bimetallic Ni catalysts as a separate monometallic phase

also boosts catalytic activity. Additionally, the cost-effectiveness of Ru compared to other noble metals renders the

bimetallic NiRu combinations quite popular in the field of heterogeneous catalysis. Rh and Pt can also greatly

enhance the catalytic activity for CO  methanation when dissolved or deposited upon Ni in small quantities. Lastly,

Pd and Re have been also tested as potential promoters in Ni-based catalysts.

The assumed trade-off between cost and catalytic activity for CO  methanation catalysts can be potentially

overcome via the development of bimetallic Ni-containing catalysts with an optimised Ni–dopant metal synergy.
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Recent advances in operando spectroscopic techniques can shed light on how the reaction mechanism differs

between Ni-based alloys or Ni–dopant metal interfaces and monometallic Ni, allowing for the development of

catalysts with the lowest possible cost and highest possible performance.
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