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AhR, a member of the basic helix-loop-helix (bHLH)-PAS superfamily, performs various functions within the brain. It is an

ancient protein that possesses shared functions and structures across various species in the evolutionary tree. It is widely

distributed in various regions of the brain, such as the hippocampus, the cortex, and the hypothalamus, and its expression

changes during the course of brain development.
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1. AhR Expression, Functions, and Signaling in the Brain

In neuronal progenitor cells, AhR interacts with its partners to direct differentiation into several neuronal subtypes, as well

as to influence dendrite morphogenesis . Although AhR expression decreases from the embryonic period into adult

life , several physiological functions remain in the adult brain, which include the regulation of neurotransmitter levels,

blood-brain barrier functions, and immune responses . Furthermore, AhR contributes to glial cell and neuroendocrine

system function . AhR activation interacts at various levels in the neuroendocrine system, from the hypothalamus

down to the target organ . For example, the AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disrupts the

secretion of several releasing hormones in the hypothalamus, such as corticotropin-releasing factor and vasopressin .

Furthermore, AhR activation in the brain leads to decreased estrogen receptors and estrogen levels . Depending

upon the ligand, AhR may act through different mechanisms to mediate its cellular and physiological functions . AhR

signaling is complex and broadly divided into canonical and non-canonical pathways. In the absence of ligands, AhR is

predominantly found in a cytoplasmic complex with heat shock protein 90 (HSP90) dimers, HBV X-associated protein 2

(XAP-2), and p23 chaperone protein. However, in the canonical pathway, ligand activation of AhR leads to the dissociation

of HBV X-associated protein 2 (XAP-2) from heat shock protein 90 (HSP90) in the cytoplasm; the activated AhR

translocates into the nucleus, where it dimerizes with aryl hydrocarbon receptor nuclear translocator (ARNT) and binds to

xenobiotic response elements (XREs) on the DNA, leading to the transcription of various cytochrome P450s (CYPs), and

glutathione transferase (GST), which, among other events, feedback to metabolize the initial ligand. Some toxicological

AhR ligands, such as TCDD and related compounds, are slowly metabolized following receptor induction, leading to

persistent AhR activation . Aryl hydrocarbon receptor repressor (AhRR), which is also an AhR target gene, helps

mediate negative feedback through the sequestration of ARNT; ligand-activated AhR is subsequently degraded by the

ubiquitin-proteasome system (Figure 1a). Apart from regulating phase 1 and phase 2 metabolic target genes for chemical

defense, AhR also regulates several protein kinases, such as p21 , and p27  that are necessary for organ

development . Inflammatory genes, such as Interleukin (IL)-6 and IL-1beta, and energy homeostasis genes, such as

TCDD-inducible poly-ADP-ribose polymerase (TiPARP/PARP7), are also direct targets of AhR . Thus, the target genes

for AhR are broad, and many are unrelated to the toxicological functions of AhR. Physiologically, AhR may form alternative

partnerships with other transcription factors, such as nuclear factor kappa-light-chain-enhancers of activated B cells (NF-

κB), proto-oncogene c-Maf, Krueppel-like factor 6 (KLF6), and others, in the cytoplasm. For example, AhR interacts with

NF-κB, which is involved in inflammation, immune and stress responses ; the induction of antioxidant genes requires

the presence of both AhR and NF-E2 p45-related factor (Nrf2) at the promoter . AhR also interacts with circadian

clock components and intracellular signaling, such as the mitogen-activated protein kinase (MAPK) cascade involved in

apoptosis, inflammation and cell senescence  (Figure 1b). ARNT shares similar sequences with brain and muscle

Arnt-like protein-1 (BMAL1), a clock component, which may contribute to AhR/circadian clock interactions . In HT22

hippocampal neuronal cells, the activation of AhR by α-naphthoflavone (α-NF) induces the phosphorylation of MAPK,

leading to cell death in an AhR-dependent manner . ARNT-2, a neuronal transcription factor that also belongs to the

bHLH-PAS superfamily, is mainly expressed in the central nervous system and has been shown to be involved in neuronal

survival . Although ARNT-2s have been shown to form dimers with AhR in vitro , the question of whether ARNT-2

can interact with AhR in vivo remains, and is of importance to the understanding of whether ARNT-2 dimerization with AhR

also participates in the activation of gene transcription in a similar way to AhR/ARNT in the brain and other organs.
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Figure 1. (a): AhR canonical pathway activation. (b): AhR non-canonical pathway activation.

Apart from xenobiotics, such as TCDD, and other polycyclic aromatic hydrocarbons (PAHs) that cross the blood-brain

barrier (BBB) to mediate some of AhR’s effects in the brain, several endogenous tryptophan metabolites, such as

kynurenine, serotonin, and 6-formylindolo [3,2-b] carbazole (FICZ), are implicated in AhR-related brain function and

pathology . Recently, attention has been drawn to the kynurenic pathway and microbial metabolites in the gut-brain

axis, as well as central nervous system (CNS) development and diseases . In the brain, L-tryptophan is primarily

metabolized through kynurenic pathways, producing several ligands that bind to AhR . AhR activation in glial cells by

the microbial metabolism of dietary tryptophan interferes with the NF-κB inflammatory transcription program, thereby

reducing neuroinflammation, which raises the possibility that this pathway could be targeted in neurodegenerative and

autoimmune diseases in the CNS . In addition to several gut microbiota metabolites, FICZ, an endogenous ligand of

AhR, promotes neurogenesis in adult neurons, which is needed for hippocampal memory maintenance in mice. Several

brain-related pathological conditions may also involve the non-canonical activation of AhR. For instance, in Alzheimer’s

disease pathology, tryptophan derivatives (kynurenic acid and 5-hydroxyindole-acetic acid) can increase neprilysin

expression, which is necessary for regulating amyloid beta clearance by proteolysis .

2. AhR and Aging Hallmarks in the Brain

2.1. Oxidative Stress

For years, the phenomenon of oxidative stress has been implicated in aging. Although several theories exist, the free

radical theory of aging originally proposed by Denham Harman in the 1950s remains the most widely accepted, with

modifications . Aged tissues and senescent cells produce oxidative stress products, which lead to an imbalance

between the oxidative and antioxidant defense network . Besides, the exposure of cells to environmental oxidant

generators, such as pesticides, heavy metals, and others, also contributes to this imbalance . Just like other organs, a
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strong correlation exists between aging in the brain and increased reactive oxygen species (ROS) formation ;

increased ROS can be attributed to mitochondrial dysfunction associated with aging . Moreover, protein

aggregation/modifications found in most aging-related brain diseases, including Alzheimer’s, have been attributed to

increased ROS formation, which tends to impair proteasome and lysosome functions .

Aryl-hydrocarbon-receptor has been mechanistically shown to be involved in the generation of oxidative stress in the

brain, as its activation by several ligands shifts the cellular redox balance towards favoring oxidative stress production 

. The AhR agonist, TCDD, induces ROS production and oxidative DNA damage in astrocytes, leading to premature

senescence, which is a hallmark of brain aging . The generation of superoxide anions, the modulation of the CYP P450

system, mitochondrial dysfunction, and increased activation of arachidonic acid signaling are among the AhR-dependent

pathways (Figure 2) that lead to increased ROS production in the brain . Just like other organs in the body, the

activation of AhR induces the expression of CYP1A1 and CYP1B1 in most brain regions, as well as the associated

pituitary gland ; an increased expression of these xenobiotic metabolism enzymes can result in mitochondrial ROS

production through an uncoupling process that leads to the release of superoxide and hydrogen peroxide (H O ), which

are believed to accelerate the aging process in the brain . Increased production of ROS in mitochondria also

regulates inflammasomes (NLRP3) by increasing the activation of inflammatory caspases in macrophages, which are

necessary for cytokine synthesis, further contributing to brain inflammation . In addition to the uncoupling process,

arachidonic acid pathway activation by AhR leads to the increased generation of ROS through the metabolism of

arachidonic acid by CYPs and other intracellular signaling processes .

Figure 2. Involvement of AhR in oxidative stress generation. AhR activation by its ligands increases xenobiotic

metabolism enzymes (CYPs), which results in mitochondrial toxicity, leading to the generation of reactive oxygen species

(ROS). These enzymes also interact with the arachidonic acid pathway and increase the production of several arachidonic

acid metabolites, such as EETs (epoxyeicosatrienoic acid), HETEs (hydroxyeicosatrienonic acid) and prostaglandins,

which are sources of ROS in several tissues, including the brain. The generation of ROS in turn activates the

inflammasome, which aids the secretion of inflammatory cytokines.

Although AhR has also been implicated in antioxidant responses through its cross-regulation with Nrf2 in various tissues

, the evidence for this pathway in the brain is yet to be fully established. The activation of AhR with the agonist, β-

Naphthoflavone (BNF), has no significant effect on Nrf2 mRNA levels or antioxidant enzymes, such as glutathione

transferase, in the brain regions of pigs . In mice, the absence of AhR helps reduce oxidative stress in the brain .

Therefore, it is reasonable to suggest that the antioxidant role of AhR is either cell-specific and absent in the brain, or that

the oxidant response overwhelms the antioxidant response in the brain.

2.2. Stress Response

During stress, the body produces an adaptive response to reestablish the homeostasis that has been disrupted by the

stressor . Stress responses can either be cellular or generalized. The generalized stress response involves the release

of glucocorticoids (stress hormone) via the neuroendocrine hypothalamic-pituitary axis. The cellular stress response

involves various molecular changes, which may include the induction of heat shock proteins that are necessary for cell

survival . Brain aging can impose detrimental effects on both generalized and cellular stress responses, thus shifting

away from an adaptive response towards a harmful effect. For instance, the age-related elevation of glucocorticoid levels

contributes to hippocampal neuronal loss and cognitive impairment . Postmortem cerebrospinal fluid in aged and

Alzheimer’s patients contained elevated levels of cortisol , which suggests that the brain could be rejuvenated by

inhibiting stress responses in the brain. Furthermore, organelle-specific stress response pathways and the ubiquitin
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proteasome system are also affected during aging . Proteasome activities decline during aging, leading to increased

protein modifications (a hallmark in various neurodegenerative diseases), which subsequently may reduce the

effectiveness of the endoplasmic reticulum (ER) stress response . Therefore, understanding stress response pathways

during brain aging might provide relevant targets for therapeutic strategies in neurodegenerative diseases .

Aryl-hydrocarbon-receptor activation can modulate the neuroendocrine stress response system . In the brain of rainbow

trout, BNF acts through AhR signaling to downregulate steroidogenic acute regulatory protein, which is important for the

biosynthesis of neurosteroids during stress. Furthermore, BNF suppressed pro-opiomelanocortin A (POMC-A), a

precursor for adrenocorticotropic hormone (ACTH) that is necessary for the cortisol-induced stress response . AhR also

helps modulate the elevation in monoamine neurotransmitters that occurs during prolonged stress. For instance, AhR

activation by PAHs and PAH-like compounds helps reduce cortisol and brain monoaminergic activities in rainbow trout

after prolonged stress . Cellular stress responses are also influenced by AhR activation , although these effects

are yet to be explored specifically in the brain. Exploring AhR receptor involvement in glial cell cellular stress response

mechanisms would be interesting, since these cells have been shown to be involved in brain stress responses .

2.3. Neurogenesis and Neuronal Plasticity

In the adult brain, neurogenesis appears to be important for the maintenance of the brain’s neuronal circuitry . In the

subgranular zone (SGZ) of the hippocampal dentate gyrus in young adult rats, newly generated neuronal cells tend to

integrate with the pre-existing hippocampal circuit, which is necessary for learning and memory . Neuronal

stem/progenitor cells (NSC) are also found in the subependymal zones and olfactory bulbs of adult primates/humans 

. Several neurodegenerative diseases, including Alzheimer’s disease, have been linked with aging-associated decline

in neurogenesis and plasticity that occurs secondary to a loss in the proliferating potential of NSC . Moreover, aged

animals produce significantly fewer new neurons in the subventricular zone (SVZ) and SGZ of the hippocampus, which

may contribute to a decline in cognitive functions that accompanies brain aging . Aging also leads to the activation of

glial cells and the subsequent secretion of pro-inflammatory cytokines, such as IL-1, which negatively impact NSC state

and differentiation .

Aryl-hydrocarbon-receptor enhances neuronal proliferation during development; however, its role in adult neurogenesis is

less well-investigated. AhR activation can regulate several genes involved in multiple aspects of synaptic plasticity and

neurogenesis after brain development. A study using the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis revealed that the administration of TCDD in the adult brain upregulates the

genes required for synaptic plasticity and neuronal activities, including genes encoding for postsynaptic density 95 (PSD-

95) protein and early growth response 1 (EGR1) . The conditional deletion of AhR in adult mice also showed that AhR

activation is necessary for SGZ neurogenesis by increasing the number of newborn granule cells in the DG of the

hippocampus, which in turn improves hippocampus-dependent memory . Similarly, AhR signaling helps restore

neurogenesis after brain injury by enhancing ependymal glial cells to generate the new neurons necessary for repair in

zebrafish . Although several exogenous toxic AhR ligands have been studied for their neurotoxic effects targeting NSC

in the adult brain, FICZ, an endogenous ligand of AhR, showed positive effects on the fate of NSCs by upregulating the

ASCL1 and Ngn2 genes necessary for neuronal differentiation in the SGZ area of the adult mouse hippocampus .

Additionally, AhR activation by FICZ improves hippocampal-dependent memory and learning tasks, which  was reversed

following treatment with the AhR antagonist, CH22319 .
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