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Self-regulated learning (SRL) is an active process in which individuals set goals, monitor their learning process, and

regulate it according to goals and contextual demands. Most models of self-regulated learning assume that the purposeful

use of specific processes, strategies, or responses is directed toward improving academic performance. They also

assume that SRL involves cognitive, metacognitive, and motivational/affective processes, knowledge about these

processes, and strategies for carrying them out. It is challenging to measure the (meta)cognitive and motivational/affective

process and its components in SRL. No existing measure alone can capture the full complexity of this dynamic process

and its contents. In general, SRL measures can be divided into offline and online measures. Offline measures, e.g., self-

report questionnaires and interviews, attempt to capture self-regulation before or after the completion of the learning

process, while online measures attempt to capture self-regulation in real time while learning is in progress.
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1. Introduction

The COVID-19 pandemic has profoundly changed our lives. The use of ICT in education has increased . Student

individual learning and the use of electronic sources and expository texts in the e-environment has increased significantly

. Effective use of digital learning materials requires well-developed self-regulatory learning skills. Digital texts are usually

presented in a non-linear format ; they contain images, animations, and various information search options. Therefore,

compared to learning with printed materials, e-learning requires students to use more self-regulation during learning .

Although reading comprehension is higher when reading on paper than on screen , and student performance and

reading times are higher when learning linear text than when learning hypertext , developing students’ self-regulated

learning (SRL) improves learning efficiency in both traditional  and e-learning environments .

2. Self-Regulated Learning (SRL)

According to Zimmerman’s cyclical model , self-regulated learning (SRL) is a dynamic process that includes activities

before, during, and after learning. The relationships between the processes in the phases of SRL are causal and cyclical.

Before learning, motivational aspects (such as interest, task value, learner self-efficacy) influence learners’ decisions to

set learning goals and plan learning activities. During learning, learners control themselves, the tasks, and the

environment: they monitor their learning, selectively direct their attention, and use different strategies to remember and

solve learning tasks. After learning, they undergo self-evaluation and make attributions for success or failure that trigger

various positive or negative emotions (e.g., satisfaction, pride, shame, fear) that influence self-regulation in further

learning. The processes in each phase affect processes in the next phase. Cognitive, metacognitive, and

motivational/affective processes are constantly interwoven.

3. Measurement of SRL

It is challenging to measure the (meta)cognitive and motivational/affective process and its components in self-regulated

learning (SRL). No existing measure alone can capture the full complexity of this dynamic process and its contents. In

general, SRL measures can be divided into offline and online measures . Offline measures, e.g., self-report

questionnaires and interviews, attempt to capture self-regulation before or after the completion of the learning process.

Such measures are subject to social desirability bias and students’ inability to access higher-order cognitive processes
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during learning due to memory failures, distortions, or interpretive reconstruction . Online measures, on the other

hand, attempt to capture self-regulation in real time while learning is in progress. Some of the online measures are

unobtrusive and do not interfere with student learning , e.g., traces collected by computer software during learning

(time spent on a particular page or content, clicks on hyperlinks, scrolling, and return to previous page). From these

traces, inferences can be made about how students monitor and update their understanding or how much effort they put

into learning . On the other hand, the think aloud method can reveal students’ cognitive, metacognitive, and

motivational processes, but it can be difficult for students to use and is not appropriate for studies that involve entire

classes. Students can also take notes as they learn. These are a rather intrusive measure, but reveal a great deal about

students’ self-regulation, particularly the learning strategies they use. Offline measures can be general or task-specific,

whereas online measures are always task-specific .

4. Multi-method Approach

Studies of the convergent validity of different self-regulated learning (SRL) measures show inconsistent results.

Correlations between offline measures vary from low to high , with most results in the low to moderate range.

Results are also mixed for online measures. Some scholars report moderate to high correlations between different online

measures, e.g., for strategies derived from writing journals  and from think aloud methods and systematic observations

. Research on correlations between off- and online measures also shows mixed results, ranging from low to moderate

correlations between self-report questionnaires and notes, to no to moderate correlations between self-reports and the

think aloud method , to high correlations between note-taking and think aloud protocols  and between self-reports

and traces in the study material . Low correlations between the off- and online measures of SRL suggest that they

measure different aspects of SRL use in learning digital science texts. Several scholars  emphasized the

importance of measuring self-regulation using multi-methods in order to avoid the drawbacks of using single measures

and to gain valid insight into students’ actual approach to learning.

Student achievement in science positively correlates with their use of SRL strategies. Studies show low to moderate

correlations between offline measures of cognitive strategies and learning performance and moderate to large correlations

for online measures . Students with higher knowledge gains report the higher use of deep cognitive strategies,

higher motivation for learning and use a higher number of strategies in note-taking while learning. Most off- and online

SRL measures are positively related to student achievement, but correlations were low. In general, higher use of self-

regulation in learning is associated with higher achievement .

Highly motivated students are more likely to use a variety of learning strategies in online courses  and higher levels of

strategy use positively correlates with higher learning achievement . Impact on student achievement was found for self-

efficacy, effort regulation, increasing task value, improving attitudes toward the content, and time and study management

.

All these results suggest the importance of cognitive, metacognitive, and motivational processes for better performance.

Students with higher academic performance report greater use of deep cognitive strategies and metacognitive strategies,

while their motivation is reflected in greater time spent learning, their higher initial motivation, and their engagement during

learning. Deep cognitive strategies and motivation are more important than their initial knowledge of the topic.

These findings have several practical implications for classroom practice. First, they suggest that teachers should help

students learn metacognitive and deep cognitive strategies that promote higher levels of knowledge. An important part of

promoting SRL is showing students how the effort they put into their individual learning, along with their engagement and

time spent learning, translates into the acquisition of more organized knowledge and better grades.
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