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Reactive organophosphates (OPs) comprise of collectively a group of phosphorous-based toxic chemicals that

cause life-threatening toxic symptoms in humans. These include nerve agents and agricultural pesticides.

Nanomaterial applications offer a high potential in developing nanosensors for sensitive OP detection and

quantitative analysis.
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1. Introduction

The term reactive organophosphates (OPs) refers collectively to a group of phosphorous-based toxic chemicals

that cause life-threatening toxic symptoms in humans. These comprise OP nerve agents such as sarin, soman and

VX, as well as OP-based pesticides like chlorpyrifos, paraoxon and malaoxon, among others (Figure 1) .

Despite their much lower toxicity, the OP pesticides are still formidable due to their wide distribution ranging from

insect controls in the agricultural and horticultural sectors to pest treatments for domestic pets, farm animals and

houses . OP toxicity is commonly attributed to a phosphorous (thio)ester core that serves as its reactive

functionality. It is highly susceptible to engaging in a covalent conjugation with a nucleophilic residue present in

proteins and cellular enzymes in plasmas . This OP reaction results in a covalent protein modification and

thus loss of their original activity.
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Figure 1. (A) (left) Types of representative organophosphates (OP) including nerve agents and pesticides and

(right) covalent inhibition of acetylcholine esterase (AChE) by OP such as paraoxon ethyl (POX). Inset: An X-ray

crystal structure for POX-inactivated human AChE in complex with 2-PAM, an enzyme reactivator which works by

nucleophilic dephosphorylation (protein data bank (PDB) code 5HFA ref ). Adapted with permission from ref ,

Copyright 2019, The Royal Society of Chemistry. (B) Selected nanomaterials and their applications in OP detection

and treatment. Abbreviations: MNP = magnetic nanoparticle, AuNP = gold (Au) NP, QD = quantum dot, MSN =

mesoporous silica nanoparticle, MOF = metal-organic framework, UCN = upconversion nanocrystal.

OP exposures remain a source of serious safety concerns given the history of accidental or terrorist incidents and

increasingly indiscriminate use of OP pesticides that is responsible for environmental pollution and crop

contamination . In particular, persistent exposures to OP pesticides result in delayed or chronic toxicity in

affected organisms . Despite such concerns, current capability to address OP issues remains suboptimal due to

paucity of advanced technologies that enable for sensitive OP detection or effective treatment. Nanomaterials have

made a growing impact on developing therapeutic agents  and sensors  in numerous

areas. These are classified as a group of objects or structures in a nanometer size range which display functional

properties distinct from bulk materials . Such properties are characterized largely by their composition, size

[9] [10]
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and shapes, which include nanospheres , nanotubes , planar nanosheets , nanodisks , nanocages

 and nanorods  (Figure 1). They allow structural modifications and offer functional capabilities through

magnetic control, light absorption, fluorescence, luminescence, cavity loading or pore gating. These properties

make nanomaterials highly applicable for sensors , drug delivery platforms or nanoscale reactors .

Therefore, nanomaterial applications offer a high potential to address existing OP-related serious problems.

2. Nanosensors for Reactive Organophosphate Detection

2.1. Electrochemistry

2.1.1. AChE-Immobilized Electrode

Electrochemical detection constitutes one of fundamental approaches in biosensor design for OP analysis . This

often relies on fabricating an OP-responsive electrode through its surface functionalization such as by

immobilization with AChE . This enzyme functionalization is therefore responsible for generating an OP-

specific signal in amperometry or voltammetry when its immobilized enzyme loses its catalytic activity upon

inactivation by OP . This detection method is validated for its ability to detect individual OP pesticides or

their mixture.

2.1.2. AChE-Immobilized Nanosensor

In an electrochemical nanosensor design, AChE is immobilized on the nanoparticle (NP) surface in lieu of the bulk

electrode surface. This approach has been applied to magnetic nanoparticles (MNPs) such as iron oxide (Fe O )

nanoparticle (IONP)  and nano Fe-Ni , each offering an important benefit of magnetic control. Thus, using

AChE-immobilized MNPs allows temporal and spatial control of MNP localization in an working electrode or

screen-printed electrode under an applied magnetic field  as reported by Rodrigues et al. In this study, they

report unique benefits such as ability for nanosensor assembly on demand and convenience in electrode renewal

(cleaning). These are otherwise not available simply by permanent AChE immobilization on the electrode surface.

AChE immobilization in MNP-based nanosensors can be achieved by protein crosslinking through glutaraldehyde

, Ni-histidine tag  or light responsive polymer . Their sensitivity for OP detection is validated with

pesticides such as chlorpyrifos and malathion with limit of detection (LOD) as low as sub nM (Table 1).

Table 1. Nanomaterial-enabled sensors developed for OP analysis.
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Detection Concept Design OP Analyte (LOD)

Electrochemistry AChE
Inhibition

IONP@AChE
Chlorpyrifos oxon, malathion

(0.3 nM)

nano Fe-Ni@AChE Phosmet (0.1 nM)

AuNP-CaCO @AChE Malathion, chlorpyrifos (0.1 nM)3
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AuNP = gold nanoparticle; GNS = graphene nanosheet; rGO = reduced graphene oxide; IONP = iron oxide

nanoparticle; MNP = magnetic nanoparticle; MOF = metal-organic framework; MSN = mesoporous silica

nanoparticle; PVP = polyvinylpyrrolidone; QD = quantum dot; UCN = upconversion nanoparticle.

 

 

Non-magnetic NPs are also employed in developing electrochemical nanosensors. These include gold nanoparticle

(AuNP) , nano Ag and mesoporous silica nanoparticle (MSN) , each functionalized by AChE immobilization

or non-covalent encapsulation for OP specificity. These nanosensors offer sufficient sensitivity to detect a wide

range of OP pesticides as listed in Table 1.

2.1.3. Antibody-Immobilized Nanosensor

Detection Concept Design OP Analyte (LOD)

nano Ag@Chitosan-
AChE

POX (15 nM)

MSN@AChE Dimethoate (6.5 nM)

Anti-OP
Antibody

GNS@Anti-parathion Ab Parathion (0.2 fM)

OP
Adsorption

rGO@Cu
Parathion, fenitrothion,

malathion (3 nM)

rGO@AuNP-polymer Malathion (0.1 nM)

GNS@AuNP Parathion methyl (2 nM)

OP Reaction
GO@AuNP-

acetophenone oxime
Diethyl cyanophosphonate,

dimethoate, fenitrothion

Fluorescence
(Luminescence)
Spectroscopy

AChE
Inhibition

Cd-Te QD Paraoxon, GB, VX (0.1–8.0 nM)

OP
Adsorption

CdTe QD Chlorpyrifos (0.1 nM)

ZnS-Mn QD Diethyl phosphorothioate

Hf-doped MOF Methylphosphonate

AuNP@Rhodamine Ethoprophos (37 nM)

OP Reaction
CdS QD + Eosin Y Chlorpyrifos (29 nM)

UCN@Oxime probe Dimethoate (0.14 μM)

Colorimetry &
Spectrophotometry

AChE
Inhibition

AuNR + AChE Dichlorvos (45 fM)

OP
Adsorption

AuNP, AgNP Ethion, parathion

AuNP@Rhodamine Ethoprophos (37 nM)

Nano Ag@PVP Chlorpyrifos (14 nM)

[39] [40] [41]
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Another approach for OP detection involves using an antibody raised against a specific OP species. This is

described in a study reported by Mehta et al.  in which an anti-parathion antibody was immobilized on the

surface of graphene nanosheet (GNS). As a two-dimensional nanostructure, GNS displays an excellent degree of

conductance for electrons, which is hence highly suited for application in electrochemical biosensing. This GNS-

based immunosensor showed high detection sensitivity for parathion or parathion-like pesticides with LOD as low

as fM . However, despite such sensitivity, using an immunosensor has certain drawbacks because its employed

antibody is able to recognize only a specific subset of OPs and not applicable to a broader spectrum of OPs .

2.1.4. OP-Responsive Nanosensor

As introduced briefly above, GNS display unique features in its structure and property beneficial for electrochemical

OP detection. These include high surface area-to-volume ratio, ultralow thickness and high electronic conductance

. Their combination confers GNS with sensitive ability to respond to OP adsorption or reaction that occurs on its

surface. This is illustrated with a copper-graphene nanocomposite in Figure 2A that shows ability to detect sulfur-

containing OP pesticides . Such GNS-based OP detection is further validated using copper-coated reduced

graphene oxide (rGO) , AuNP-coated rGO  and AuNP-coated GNS . Besides, GNS nanosensors are

designed by surface modification with an OP-specific probe molecule that engages in selective OP recognition

and/or its reaction. Huixiang et al.  validated this concept using GO@AuNP functionalized with 4-

aminoacetophenone oxime. Thus, an electrode fabricated with this graphene nanocomposite has led to OP

detection with LOD at low nM (Table 1).

[42]
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Figure 2. (A) A copper (II)-functionalized graphene nanocomposite applied for sensing sulfur-containing

organophosphate (OP) pesticides. Reproduced with permission from , Copyright 2013, The Royal Society of

Chemistry. (B) Dithizone-coordinated CdTe quantum dot (QD) applied for chlorpyrifos detection. Its concept of

detection involves restoration of its fluorescence by dithizone replacement with diethylphosphorothioate, a

hydrolytic byproduct of chlorpyrifos. Reproduced with permission from , Copyright 2010, American Chemical

Society.

In summary, electrochemical nanosensors have shown promising capabilities for OP detection. These are

designed with nanomaterials such as IONP , nano Fe-Ni , AuNP , nano Ag , MSN  or graphene-

based NP , each functionalized with AChE , OP antibody  or OP-reactive moiety .

These nanosensors offer characteristic advantages including high loading capacity in electrodes, high sensitivity,

and fast onset of action due to a narrow spacing between interacting electrodes. Their capabilities are attributable

to a combination of their nanometer size, shape and other design features which are not available by conventional

bulk electrodes .

2.2. Absorbance, Fluorescence and Luminescence Spectroscopy

[44]

[48]
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In general, most OPs do not contain chromophores that are applicable for spectroscopic detection by UV–Vis

absorbance or fluorescence. There are only few OPs which contain aromatic moieties for UV absorbance such as

parathion, paraoxon (POX) and fenitrothion , each containing a 4-nitrophenyl group. However, their direct

detection by spectrometry is not efficient because their molar absorptivity is practically too low for sensitive

analysis. Instead, these are better detectable indirectly through a mechanism of fluorescence quenching in which

each chromophore serves as a fluorescence quencher to a sensor molecule added separately such as coumarin

. This fluorescence quenching assay is validated with parathion, POX and fenitrothion, and it displays relatively

low sensitivity in the range of 10 –10  M .

2.2.1. Quantum Dot (QD) Nanosensors

QDs are notable for their bright fluorescence in the visible and near infrared (NIR) range . Their fluorescence

is applicable for OP detection as illustrated with QD sensors made of CdTe , CdS  and Mn-doped ZnS .

Their detection principle varies with specific design features introduced in each sensor, but it involves measuring a

change in QD fluorescence intensity that occurs in response to OP adsorption or a chemical reaction on the QD

surface . The change occurs via either fluorescence resonance energy transfer (FRET)  or photoelectron

transfer (PET)  between the donor (QD) and the OP-responsive acceptor attached on the surface. Zhang et al.

reported dithizone-coordinated CdTe QD designed for FRET quenching-based chlorpyrifos detection via dithizone

hydrolysis as shown in Figure 2B .

2.2.2. Upconversion Nanocrystal (UCN) Nanosensors

UCNs belong in an emerging class of photoactive nanomaterials that include NaYF  doped with lanthanide ions

(Yb, Er, Tm) in their lattice structure . Unlike QDs, UCNs are excited by irradiation at longer NIR wavelengths

(980 or 808 nm) with ability to emit upconversion luminescence at shorter visible wavelengths such as 475 nm .

Their luminescence intensity is sensitive to surface functionalization, and it can be quenched via its luminescence

resonance energy transfer (LRET) to an acceptor molecule localized at a close proximity. In a recent study, Wang

et al.  describes such luminescence quenching using UCN functionalized with an OP-reactive oxime probe on

the surface (Figure 3A). This quenched luminescence is applicable for OP detection because it is restored when

the oxime probe reacts with OP which leads to LRET deactivation. This UCN-based nanosensor has shown a

detection sensitivity for diethyl chlorophosphate or dimethoate at μM .

[49]
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Figure 3. (A) Upconversion nanocrystal (UCN) immobilized with an oxime probe on the surface applied for OP

detection through the mechanism of luminescence resonance energy transfer (LRET) between UCN and the oxime

probe involved in organophosphate detection. Reproduced with permission from ref , Copyright 2016, The Royal

Society of Chemistry. (B) A schematic diagram for metal-organic framework (MOF)-based approaches developed

for pesticide sensing. Reproduced with permission from ref , Copyright 2018, American Chemical Society.

2.2.3. Metal-Organic Framework Nanosensors

OP can be detected by metal-organic frameworks (MOFs) that are active in UV photoluminescence. These include

MOFs made of luminescent transition metal or lanthanide ions coordinated to organic ligands (imidazole) .

Their photoluminescence is highly responsive to microenvironmental changes in their lattice structure such as

binding by guest molecules. Thus it is diminished to a significant extent upon OP binding or encapsulation (Figure

3B) . This MOF-based luminescence assay enables to detect a broad spectrum of OP pesticides including

chlorpyrifos, parathion and azinphos-methyl as described in a study by Singha et al. . MOF sensors can be

tunable in their design for improved guest specificity as reported with hafnium (Hf) ion-doped MOF . In this

study, Lian et al. describes its specific response to methanephosphonate, a hydrolytic byproduct from nerve

[58]
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agents, with high sensitivity. Other design factors in MOF sensors include those related to addressing potential

drawbacks such as suboptimal aqueous stability, relatively slow onset of response and signal interference by other

chemicals .

2.2.4. Plasmonic Nanomaterials

Noble metal nanomaterials that include nano gold (Au) or nano silver (Ag) display light absorbance via surface

plasmon resonance (SPR) in the range of 350–500 nm (nano Ag) and 450–600 nm (nano Au) . Their SPR

absorbance is applicable for OP detection because it makes a blue shift upon chemisorption by sulfur analytes

such as thiol-releasing OPs or thion (P=S)-based OPs (Table 1) . Their detection sensitivity varies with metal

compositions and shapes as evident with hexagon-shaped nano Ag which detects chlorpyrifos more effectively

than other shapes .

Development of plasmonic nanosensors based on nano Au and nano Ag has certain limitations because they are

not directly applicable for certain OPs that lack a sulfur moiety. Such lack of broader sensitivity is however

addressed by surface functionalization with an OP-specific sensing element such as AChE , rhodamine B  or

adenosine triphosphate . Each of these sensors, which works in a different manner, has shown a broader

sensitivity extended to oxon-based ethoprophos and dichlorvos  (Table 1).

In topic summary, several types of nanosensors are developed for OP analysis with improvement in detection time,

sensitivity and specificity. Their capabilities are attributable to nanoscale structural and functional properties

enabled by various types of nanomaterials that include MNPs , nano Au , nano Ag , MSN ,

graphene , QDs , luminescent UCN  and MOF . These nanosensors are applicable for

instrumental OP analysis by electrochemistry, SPR absorbance, fluorescence and luminescence.
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