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Reactive organophosphates (OPs) comprise of collectively a group of phosphorous-based toxic chemicals that cause life-

threatening toxic symptoms in humans. These include nerve agents and agricultural pesticides. Nanomaterial applications

offer a high potential in developing nanosensors for sensitive OP detection and quantitative analysis.
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1. Introduction

The term reactive organophosphates (OPs) refers collectively to a group of phosphorous-based toxic chemicals that

cause life-threatening toxic symptoms in humans. These comprise OP nerve agents such as sarin, soman and VX, as well

as OP-based pesticides like chlorpyrifos, paraoxon and malaoxon, among others (Figure 1) . Despite their much

lower toxicity, the OP pesticides are still formidable due to their wide distribution ranging from insect controls in the

agricultural and horticultural sectors to pest treatments for domestic pets, farm animals and houses . OP toxicity is

commonly attributed to a phosphorous (thio)ester core that serves as its reactive functionality. It is highly susceptible to

engaging in a covalent conjugation with a nucleophilic residue present in proteins and cellular enzymes in plasmas

. This OP reaction results in a covalent protein modification and thus loss of their original activity.

Figure 1. (A) (left) Types of representative organophosphates (OP) including nerve agents and pesticides and (right)

covalent inhibition of acetylcholine esterase (AChE) by OP such as paraoxon ethyl (POX). Inset: An X-ray crystal structure

for POX-inactivated human AChE in complex with 2-PAM, an enzyme reactivator which works by nucleophilic

dephosphorylation (protein data bank (PDB) code 5HFA ref ). Adapted with permission from ref , Copyright 2019, The

Royal Society of Chemistry. (B) Selected nanomaterials and their applications in OP detection and treatment.

Abbreviations: MNP = magnetic nanoparticle, AuNP = gold (Au) NP, QD = quantum dot, MSN = mesoporous silica

nanoparticle, MOF = metal-organic framework, UCN = upconversion nanocrystal.
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OP exposures remain a source of serious safety concerns given the history of accidental or terrorist incidents and

increasingly indiscriminate use of OP pesticides that is responsible for environmental pollution and crop contamination .

In particular, persistent exposures to OP pesticides result in delayed or chronic toxicity in affected organisms . Despite

such concerns, current capability to address OP issues remains suboptimal due to paucity of advanced technologies that

enable for sensitive OP detection or effective treatment. Nanomaterials have made a growing impact on developing

therapeutic agents  and sensors  in numerous areas. These are classified as a group of objects

or structures in a nanometer size range which display functional properties distinct from bulk materials . Such

properties are characterized largely by their composition, size and shapes, which include nanospheres , nanotubes

, planar nanosheets , nanodisks , nanocages   and nanorods  (Figure 1). They allow structural

modifications and offer functional capabilities through magnetic control, light absorption, fluorescence, luminescence,

cavity loading or pore gating. These properties make nanomaterials highly applicable for sensors , drug delivery

platforms or nanoscale reactors . Therefore, nanomaterial applications offer a high potential to address existing

OP-related serious problems.

2. Nanosensors for Reactive Organophosphate Detection

2.1. Electrochemistry

2.1.1. AChE-Immobilized Electrode

Electrochemical detection constitutes one of fundamental approaches in biosensor design for OP analysis . This often

relies on fabricating an OP-responsive electrode through its surface functionalization such as by immobilization with AChE

. This enzyme functionalization is therefore responsible for generating an OP-specific signal in amperometry or

voltammetry when its immobilized enzyme loses its catalytic activity upon inactivation by OP . This detection

method is validated for its ability to detect individual OP pesticides or their mixture.

2.1.2. AChE-Immobilized Nanosensor

In an electrochemical nanosensor design, AChE is immobilized on the nanoparticle (NP) surface in lieu of the bulk

electrode surface. This approach has been applied to magnetic nanoparticles (MNPs) such as iron oxide (Fe O )

nanoparticle (IONP)  and nano Fe-Ni , each offering an important benefit of magnetic control. Thus, using AChE-

immobilized MNPs allows temporal and spatial control of MNP localization in an working electrode or screen-printed

electrode under an applied magnetic field  as reported by Rodrigues et al. In this study, they report unique benefits

such as ability for nanosensor assembly on demand and convenience in electrode renewal (cleaning). These are

otherwise not available simply by permanent AChE immobilization on the electrode surface. AChE immobilization in MNP-

based nanosensors can be achieved by protein crosslinking through glutaraldehyde , Ni-histidine tag   or light

responsive polymer . Their sensitivity for OP detection is validated with pesticides such as chlorpyrifos and malathion

with limit of detection (LOD) as low as sub nM (Table 1).

Table 1. Nanomaterial-enabled sensors developed for OP analysis.

Detection Concept Design OP Analyte (LOD)

Electrochemistry

AChE
Inhibition

IONP@AChE Chlorpyrifos oxon, malathion (0.3 nM)

nano Fe-Ni@AChE Phosmet (0.1 nM)

AuNP-CaCO @AChE Malathion, chlorpyrifos (0.1 nM)

nano Ag@Chitosan-AChE POX (15 nM)

MSN@AChE Dimethoate (6.5 nM)

Anti-OP
Antibody GNS@Anti-parathion Ab Parathion (0.2 fM)

OP Adsorption

rGO@Cu Parathion, fenitrothion, malathion (3
nM)

rGO@AuNP-polymer Malathion (0.1 nM)

GNS@AuNP Parathion methyl (2 nM)

OP Reaction GO@AuNP-acetophenone
oxime

Diethyl cyanophosphonate,
dimethoate, fenitrothion

[11]

[2][3]

[12][13][14][15][16][17][18][19] [20]

[21][22]

[23][24]

[25] [26] [26][27] [28] [24]

[28]

[12] [29][30]

[31]

[31][32][33][34]

[31][32][33]

3 4
[35] [36]

[35]

[35] [37][38]

[37]

3



Detection Concept Design OP Analyte (LOD)

Fluorescence (Luminescence)
Spectroscopy

AChE
Inhibition Cd-Te QD Paraoxon, GB, VX (0.1–8.0 nM)

OP Adsorption

CdTe QD Chlorpyrifos (0.1 nM)

ZnS-Mn QD Diethyl phosphorothioate

Hf-doped MOF Methylphosphonate

AuNP@Rhodamine Ethoprophos (37 nM)

OP Reaction
CdS QD + Eosin Y Chlorpyrifos (29 nM)

UCN@Oxime probe Dimethoate (0.14 μM)

Colorimetry & Spectrophotometry

AChE
Inhibition AuNR + AChE Dichlorvos (45 fM)

OP Adsorption

AuNP, AgNP Ethion, parathion

AuNP@Rhodamine Ethoprophos (37 nM)

Nano Ag@PVP Chlorpyrifos (14 nM)

AuNP = gold nanoparticle; GNS = graphene nanosheet; rGO = reduced graphene oxide; IONP = iron oxide nanoparticle;

MNP = magnetic nanoparticle; MOF = metal-organic framework; MSN = mesoporous silica nanoparticle; PVP =

polyvinylpyrrolidone; QD = quantum dot; UCN = upconversion nanoparticle. 

 

Non-magnetic NPs are also employed in developing electrochemical nanosensors. These include gold nanoparticle

(AuNP) , nano Ag and mesoporous silica nanoparticle (MSN) , each functionalized by AChE immobilization or

non-covalent encapsulation for OP specificity. These nanosensors offer sufficient sensitivity to detect a wide range of OP

pesticides as listed in Table 1.

2.1.3. Antibody-Immobilized Nanosensor

Another approach for OP detection involves using an antibody raised against a specific OP species. This is described in a

study reported by Mehta et al.  in which an anti-parathion antibody was immobilized on the surface of graphene

nanosheet (GNS). As a two-dimensional nanostructure, GNS displays an excellent degree of conductance for electrons,

which is hence highly suited for application in electrochemical biosensing. This GNS-based immunosensor showed high

detection sensitivity for parathion or parathion-like pesticides with LOD as low as fM . However, despite such sensitivity,

using an immunosensor has certain drawbacks because its employed antibody is able to recognize only a specific subset

of OPs and not applicable to a broader spectrum of OPs .

2.1.4. OP-Responsive Nanosensor

As introduced briefly above, GNS display unique features in its structure and property beneficial for electrochemical OP

detection. These include high surface area-to-volume ratio, ultralow thickness and high electronic conductance . Their

combination confers GNS with sensitive ability to respond to OP adsorption or reaction that occurs on its surface. This is

illustrated with a copper-graphene nanocomposite in Figure 2A that shows ability to detect sulfur-containing OP pesticides

. Such GNS-based OP detection is further validated using copper-coated reduced graphene oxide (rGO) , AuNP-

coated rGO  and AuNP-coated GNS . Besides, GNS nanosensors are designed by surface modification with an OP-

specific probe molecule that engages in selective OP recognition and/or its reaction. Huixiang et al.  validated this

concept using GO@AuNP functionalized with 4-aminoacetophenone oxime. Thus, an electrode fabricated with this

graphene nanocomposite has led to OP detection with LOD at low nM (Table 1).
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Figure 2. (A) A copper (II)-functionalized graphene nanocomposite applied for sensing sulfur-containing organophosphate

(OP) pesticides. Reproduced with permission from , Copyright 2013, The Royal Society of Chemistry. (B) Dithizone-

coordinated CdTe quantum dot (QD) applied for chlorpyrifos detection. Its concept of detection involves restoration of its

fluorescence by dithizone replacement with diethylphosphorothioate, a hydrolytic byproduct of chlorpyrifos. Reproduced

with permission from , Copyright 2010, American Chemical Society.

In summary, electrochemical nanosensors have shown promising capabilities for OP detection. These are designed with

nanomaterials such as IONP , nano Fe-Ni , AuNP , nano Ag , MSN  or graphene-based NP 

, each functionalized with AChE , OP antibody  or OP-reactive moiety . These nanosensors offer

characteristic advantages including high loading capacity in electrodes, high sensitivity, and fast onset of action due to a

narrow spacing between interacting electrodes. Their capabilities are attributable to a combination of their nanometer size,

shape and other design features which are not available by conventional bulk electrodes .

2.2. Absorbance, Fluorescence and Luminescence Spectroscopy

In general, most OPs do not contain chromophores that are applicable for spectroscopic detection by UV–Vis absorbance

or fluorescence. There are only few OPs which contain aromatic moieties for UV absorbance such as parathion, paraoxon

(POX) and fenitrothion , each containing a 4-nitrophenyl group. However, their direct detection by spectrometry is not

efficient because their molar absorptivity is practically too low for sensitive analysis. Instead, these are better detectable

indirectly through a mechanism of fluorescence quenching in which each chromophore serves as a fluorescence

quencher to a sensor molecule added separately such as coumarin . This fluorescence quenching assay is validated

with parathion, POX and fenitrothion, and it displays relatively low sensitivity in the range of 10 –10  M .

2.2.1. Quantum Dot (QD) Nanosensors

QDs are notable for their bright fluorescence in the visible and near infrared (NIR) range . Their fluorescence is

applicable for OP detection as illustrated with QD sensors made of CdTe , CdS  and Mn-doped ZnS . Their

detection principle varies with specific design features introduced in each sensor, but it involves measuring a change in

QD fluorescence intensity that occurs in response to OP adsorption or a chemical reaction on the QD surface . The

change occurs via either fluorescence resonance energy transfer (FRET)  or photoelectron transfer (PET)

 between the donor (QD) and the OP-responsive acceptor attached on the surface. Zhang et al. reported dithizone-

coordinated CdTe QD designed for FRET quenching-based chlorpyrifos detection via dithizone hydrolysis as shown in

Figure 2B .

2.2.2. Upconversion Nanocrystal (UCN) Nanosensors
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UCNs belong in an emerging class of photoactive nanomaterials that include NaYF  doped with lanthanide ions (Yb, Er,

Tm) in their lattice structure . Unlike QDs, UCNs are excited by irradiation at longer NIR wavelengths (980 or 808

nm) with ability to emit upconversion luminescence at shorter visible wavelengths such as 475 nm . Their luminescence

intensity is sensitive to surface functionalization, and it can be quenched via its luminescence resonance energy transfer

(LRET) to an acceptor molecule localized at a close proximity. In a recent study, Wang et al.   describes such

luminescence quenching using UCN functionalized with an OP-reactive oxime probe on the surface (Figure 3A). This

quenched luminescence is applicable for OP detection because it is restored when the oxime probe reacts with OP which

leads to LRET deactivation. This UCN-based nanosensor has shown a detection sensitivity for diethyl chlorophosphate or

dimethoate at μM .

Figure 3. (A) Upconversion nanocrystal (UCN) immobilized with an oxime probe on the surface applied for OP detection

through the mechanism of luminescence resonance energy transfer (LRET) between UCN and the oxime probe involved

in organophosphate detection. Reproduced with permission from ref , Copyright 2016, The Royal Society of Chemistry.

(B) A schematic diagram for metal-organic framework (MOF)-based approaches developed for pesticide sensing.

Reproduced with permission from ref , Copyright 2018, American Chemical Society.

2.2.3. Metal-Organic Framework Nanosensors

OP can be detected by metal-organic frameworks (MOFs) that are active in UV photoluminescence. These include MOFs

made of luminescent transition metal or lanthanide ions coordinated to organic ligands (imidazole) . Their

photoluminescence is highly responsive to microenvironmental changes in their lattice structure such as binding by guest

molecules. Thus it is diminished to a significant extent upon OP binding or encapsulation (Figure 3B) . This MOF-based

luminescence assay enables to detect a broad spectrum of OP pesticides including chlorpyrifos, parathion and azinphos-

methyl as described in a study by Singha et al. . MOF sensors can be tunable in their design for improved guest

specificity as reported with hafnium (Hf) ion-doped MOF . In this study, Lian et al. describes its specific response to

methanephosphonate, a hydrolytic byproduct from nerve agents, with high sensitivity. Other design factors in MOF

sensors include those related to addressing potential drawbacks such as suboptimal aqueous stability, relatively slow

onset of response and signal interference by other chemicals .

2.2.4. Plasmonic Nanomaterials

Noble metal nanomaterials that include nano gold (Au) or nano silver (Ag) display light absorbance via surface plasmon

resonance (SPR) in the range of 350–500 nm (nano Ag) and 450–600 nm (nano Au) . Their SPR absorbance is

applicable for OP detection because it makes a blue shift upon chemisorption by sulfur analytes such as thiol-releasing

OPs or thion (P=S)-based OPs (Table 1) . Their detection sensitivity varies with metal compositions and shapes as

evident with hexagon-shaped nano Ag which detects chlorpyrifos more effectively than other shapes .
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Development of plasmonic nanosensors based on nano Au and nano Ag has certain limitations because they are not

directly applicable for certain OPs that lack a sulfur moiety. Such lack of broader sensitivity is however addressed by

surface functionalization with an OP-specific sensing element such as AChE , rhodamine B   or adenosine

triphosphate . Each of these sensors, which works in a different manner, has shown a broader sensitivity extended to

oxon-based ethoprophos and dichlorvos  (Table 1).

In topic summary, several types of nanosensors are developed for OP analysis with improvement in detection time,

sensitivity and specificity. Their capabilities are attributable to nanoscale structural and functional properties enabled by

various types of nanomaterials that include MNPs , nano Au , nano Ag , MSN , graphene 

, QDs , luminescent UCN  and MOF . These nanosensors are applicable for instrumental OP analysis by

electrochemistry, SPR absorbance, fluorescence and luminescence.
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