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Deep learning algorithms, renowned for their ability to extract intricate patterns from complex datasets, have

proven particularly adept at handling the multifaceted time-series data characteristic of smart city IoT applications.

Deep learning architectures model complex relationships through a series of nonlinear layers—the set of nodes of

each intermediate layer capturing the corresponding feature representation of the input.
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1. Introduction

A smart city is a place where traditional networks and services are improved by utilizing and embracing

contemporary technological principles for the benefit of its citizens . Smart cities are being rapidly implemented to

accommodate the continuously expanding population in urban cities and provide them with increased living

standards . Going beyond the use of digital technologies for better resource use and less emissions, the

development of smart cities entails smarter urban transportation networks, more responsive and interactive

administration, improved water supply and waste disposal facilities, more efficient building lighting and heating

systems, safer public places, and more. To this end, smart cities employ Internet of Things (IoT) devices, such as

connected sensors, embedded systems, and smart meters, to collect various measurements at regular intervals

(time-series data), which are subsequently analyzed and ultimately used to improve infrastructure and services .

Deep learning algorithms , renowned for their ability to extract intricate patterns from complex datasets, have

proven particularly adept at handling the multifaceted time-series data characteristic of smart city IoT applications.

These algorithms are designed to capture the dynamics of multiple time series concurrently and harness

interdependencies among these series, resulting in more robust predictions . Consequently, deep learning

techniques have found application in various time-series forecasting scenarios across diverse domains, such as

retail , healthcare , biology , medicine , aviation , energy , climate , automotive industry  and

finance .

Remarkable examples of these technologies in action include Singapore’s Smart Nation Program around traffic-

flow forecasting, Beijing’s Environmental Protection Bureau ‘Green Horizon’, the City of Los Angeles’ ‘Predicting

What We Breathe’ air-quality forecasting projects, and the United States Department of Energy SunShot initiative

around renewable energy forecasting. More specifically, in Singapore, the Land Transport Authority has created a

traffic management system powered by AI that analyzes real-time data to optimize traffic flow and alleviate
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congestion. In Beijing, IBM’s China Research Lab has developed one of the world’s most advanced air-quality

forecasting systems, while across multiple cities in the United States, IBM is making renewable energy-demand

and supply forecasts.

Beyond their technical implications, the implementation of such technologies brings profound socioeconomic and

environmental outcomes for cities and their residents . Indicatively, it can foster economic growth by attracting

talented individuals and entrepreneurs, potentially turning cities into innovation hubs, which, in turn, can lead to job

creation and increased economic competitiveness . As smart cities become more prosperous through economic

growth, healthcare and education become more accessible and more inclusive, which results in more engaged and

empowered citizens, contributing to social cohesion and overall well-being . Moreover, AI-driven efficiency

improvements in resource management can make cities more environmentally sustainable, addressing global

challenges such as climate change .

There have been several surveys around deep learning for time-series forecasting, both in theoretical  and

experimental  contexts. Looking at smart cities, deep learning has been used in various domains, but since this

is still an emerging application area, only a few surveys have studied the current state-of-the-art models. Many of

these, such as , describe deep learning as part of a broader view of machine learning approaches and

examine a limited number of models. Other studies focusing on deep learning methods consider a wide set of data

types, such as text and/or images , or address tasks beyond forecasting (e.g., classification), thus not

providing a comprehensive overview on time-series forecasting in IoT-based smart city applications.

2. Deep Learning Architectures for Multivariate Time-Series
Forecasting

Deep learning architectures model complex relationships through a series of nonlinear layers—the set of nodes of

each intermediate layer capturing the corresponding feature representation of the input . In a time-series

context, these feature representations correspond to relevant temporal information up to that point in time, encoded

into some latent variable at each step. In the final layer, the very last encoding is used to make a forecast. In this

section, the most common types of deep learning building blocks for multivariate time-series forecasting are

outlined.

2.1. Recurrent Neural Networks

Recurrent neural networks have a long and well-established history when it comes to time-series forecasting 

that continues to date. The core building block of RNNs is the RNN cells that essentially act as an internal memory

state. Their purpose is to maintain a condensed summary of past information deemed useful by the network for

forecasting future values. At each time step, the network is presented with fresh observations, and cells are

updated accordingly with new information. The standard structure of an RNN and its unfolded-in-time version are

shown in Figure 1. In the case of multivariate time series, the inputs x and outputs t are multidimensional in each

of the time steps.
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Figure 1. RNN unfolding—adapted from .

Older versions of RNNs were notorious for failing to adequately capture long-term dependencies, a problem

commonly known as ’exploding and vanishing gradients’ . More specifically, the lack of restriction on their look-

back window range meant that the RNNs cells were unable to contain all the relevant information from the

beginning of the sequence . The advent of long short-term memory networks (LSTMs)  and other closely

related variants, such as the gated recurrent units (GRUs ), largely alleviated this problem, by allowing the

gradients to flow more stably within the network. In Figure 2, the different cells used by the LSTMs and GRUs are

displayed.

Figure 2. Different recurrent neural network cells: LSTM (left) and GRU (right)—adapted from .

Another shortcoming of conventional RNNs was the inability to make use of future time steps. To overcome this

limitation, a new type of architecture, bidirectional RNNs (BiRNNs), was proposed by Schuster and Paliwal . The

novelty of BiRNNs was that they could be trained in both time directions at the same time, using separate hidden

layers for each direction: forward layers and backward layers. Later on, Graves and Schmidhuber  introduced

the LSTM cell to the BiRNN architecture, creating an improved version: the bidirectional LSTM (BiLSTM). Using the

same principles, the bidirectional paradigm can be extended to GRUs to create BiGRU networks. A very common

and powerful end-to-end approach to sequence modeling that utilizes LSTMs, GRUs, or their bidirectional versions

is the sequence-to-sequence (Seq2seq) or encoder-decoder framework . This framework originally had a lot of

success in natural language processing tasks, such as machine translation, but can also be used in time-series

prediction . Under this framework, a neural network (the encoder) is used to encode the input data in a fixed-

size vector, while another neural network takes the produced fixed-size vector as its own input to produce the
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target time series. Any of the mentioned RNN variants can act as the encoder or the decoder. Such an architecture

can produce an entire target sequence all at once. All these advances and improvements to RNNs have resulted in

them being established as the driving force behind many modern state-of-the-art multivariate time-series

forecasting architectures, which use them as their main building blocks .

When utilizing RNNs and their variants, careful attention should be given to their hyperparameter tuning ,

especially in the selection of the number of hidden units, hidden layers, the learning rate, and the batch size. The

number of hidden units and layers should align with the data complexity, and the more complex the data, the higher

the number of layers and neural networks as a general rule of thumb. Adaptive learning rate techniques are

essential to address nonstationarity, while the right batch size can ensure a smoother learning process. Lastly, for

such models to thrive, it is important that the length of the input sequences should match the time patterns in it,

especially if long-term connections are to be captured.

2.2. Convolutional Neural Networks

Convolutional neural networks were originally used for computer vision tasks. By making strong, but to a great

degree correct, assumptions about the nature of images in terms of the stationarity of statistics and locality of pixel

dependencies, CNNs are able to learn meaningful relationships and extract powerful representations .

CNNs typically consist of a series of convolutional layers followed by pooling layers, with one or more dense layers

in the end. Convolutional layers perform a convolution operation of their input series with a filter matrix to construct

high-level representations. The purpose of the pooling operation is to reduce the dimensionality of these

representations while preserving as much information as possible. In addition, the produced representations are

rotationally and positionally invariant. CNNs for time-series data, usually referred to as temporal CNNs and similar

to standard/spatial CNNs, make invariance assumptions. In this case, however, such assumptions are about time

instead of space, as they maintain the same set of filter weights across each time step. For CNNs to be transferred

from the domain of computer vision to time-series forecasting, some modifications are needed . A main

concern is that the look-back window of CNNs is controlled by and limited by the size of its filter, also known as the

receptive field. As a result, choosing the right filter size is crucial for the network’s capability to pick up all the

relevant historical information, and finding an optimal size is not an easy task and is usually considered part of the

hyperparameter tuning process . Another consideration is related to the leakage of data from the future into the

past; in , the so-called causal convolutions were developed to make sure that there is no leakage from the future

into the past and only past information is used for forecasting. Lastly, to capture long-term temporal dependencies,

a combination of very deep networks, augmented with residual layers, along with dilated convolutions, are

employed, which are able to maintain very long effective history sizes . An example of a CNN architecture for

multivariate time-series forecasting can be seen in Figure 3. Since the number of parameters grows in line with the

size of the look-back window, the use of standard convolutional layers can be computationally expensive,

especially in cases where strong long-term dependencies are formed. To decrease the computational burden but

maintain the desired results, newer architectures  often employ so-called dilated convolutional layers. Dilated

convolutions can be viewed as convolutions of a downsampled version of the lower-level features, making it much
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less expensive to incorporate information from past time steps. The degree of downsampling is controlled by the

dilation rate, applied on a layer basis. Dilated convolutions can, therefore, gradually accumulate information from

various time blocks by increasing the dilation rate with each layer, allowing for more efficient utilization of historic

information .

Figure 3. Convolutional neural network architecture for multivariate time-series forecasting—adapted from .

When it comes to hyperparameter tuning, focus should be directed towards the alignment of the number of filters,

the filter sizes, the number of convolutional layers, and pooling strategies with the inherent patterns of the data .

More specifically, the more intricate and diverse the data are, the greater the number of filters and layers needed to

capture it. Longer sequences contain more information and context and usually require larger filters to capture

broader patterns and dependencies over extended periods. If the data are noisy, then pooling layers can help cut

through the noise and improve the model’s focus on the features that matter.

2.3. Attention Mechanism

LSTMs acted to mitigate the problem of vanishing gradients, however, they did not eradicate it. While, in theory, the

LSTM memory can hold and preserve information from the previous state, in practice, due to vanishing gradients,

the information retained by these networks at the end of a long sequence is deprived of any precise, contextual, or

extractable information about preceding states.

This problem was addressed by the attention mechanism , originally used in transformer architectures for

machine translation . Attention is a technique that helps neural networks focus on the more important parts

of the input data and deprioritize the less important ones. Which parts are more relevant is learned by the network

through the input data itself and is derived by the context. This is achieved by making all the previous states at any

preceding point along the sequence available to the network; through this mechanism the network can access all

previous states and weight them according to a learned measure of relevancy, providing relevant information even

from the distant past. Outside of natural language processing tasks, attention-based architectures have

demonstrated state-of-the-art performance in time-series forecasting . The two most broadly used attention

techniques are dot-product attention and multihead attention. The former calculates attention as the dot product

between vectors, while the latter incorporates various attention mechanisms—usually different attention outputs

[5]

[48]

[47]

[49][50]

[51][52][53]

[54][55][56]



Deep Learning Architectures for Multivariate Time-Series Forecasting | Encyclopedia.pub

https://encyclopedia.pub/entry/50864 6/14

are independently computed and are subsequently concatenated and linearly transformed into the expected

dimension. These two different types of attention are shown in Figure 4.

Figure 4. Attention mechanisms: dot-product (left) vs. multihead (right)—adapted from .

The choice of hyperparameters in attention models for time-series forecasting can be heavily influenced by the

specific characteristics of the time-series data . For instance, the series length can affect the number of attention

heads and the attention window size. Longer sequences may require more attention heads to capture various

dependencies and a wider attention window to consider longer-term patterns. Seasonality in the data may

necessitate specialized attention mechanisms or attention spans to focus on recurring patterns, while nonstationary

data may benefit from adaptive attention mechanisms to adapt to changing dynamics. The choice of attention

mechanism type may also depend on the data characteristics; self-attention mechanisms like those in transformers

are known for their ability to capture complex dependencies and intricate patterns.

2.4. Graph Neural Networks

In some cases, time-series problems are challenging because of the complex temporal and spatial dependencies.

RNNs and temporal CNNs are capable of modeling the former, but they cannot solve the latter. Normal CNNs, to

some degree, alleviate the problem by modeling the local spatial information; however, they are limited to cases of

Euclidean structure data. Graph neural networks (GNNs), designed to exploit the properties of non-Euclidean

structures, are capable of capturing the underlying spatial dependencies, offering a new perspective on

approaching such forecasting problems, e.g., traffic-flow forecasting .
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GNN-based approaches are generally divided into two categories: spectral and nonspectral approaches. For

spectral approaches to function, a well-defined graph structure is required . Therefore, a GNN trained on a

specific structure that defines the relationships among the different variables cannot be directly applied to a graph

with a different structure. On the other hand, nonspectral approaches define convolutions directly on the graph,

operating on groups of spatially close neighbors; this technique operates by sampling a fixed-size neighborhood of

each node, and then performing some aggregation function over it . In any case, variables from multivariate time

series can then be considered as nodes in a graph, where the state of a node depends on the states of its

neighbors, forming latent spatial relationships.

To capture the spatial dependencies among their nodes, GNNs use a different type of convolution operation, called

graph convolution . The basic idea of graph convolutions is similar to that of traditional convolutions, often used

in images, where a filter is applied to a local region of an image and produces a new value for each pixel in that

region. Similarly, graph convolutions apply a filter to a local neighborhood of nodes in the graph, and a new value is

computed for each node based on the attributes of its neighbors. This way, node representation is updated by

aggregating information from their neighbors. Graph convolutions are typically implemented using some message-

passing scheme that propagates information through the graph . In Figure 5, such convolution operations on

different nodes of a graph are exemplified.

Figure 5. Graph convolutions applied to different nodes of a graph. Each node is denoted by a number (0–5).

Regarding the temporal dependencies, some GNN-based architectures may still use some type of RNN or

temporal CNN to learn the temporal dependencies , while others have tried to jointly model both the

intraseries temporal patterns and interseries correlations . A new type of GNN, which incorporates the attention
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mechanism, called a graph attention network (GAT), was introduced by Veličković et al. . The idea is to

represent each node in the graph as a weighted average of the nonlinearly transformed features of only the

neighboring nodes, using the attention coefficients. As a result, different importances are assigned to different

nodes within a neighborhood, and at the same time, the need to know the entire graph structure upfront is

eliminated. Even though recent advances in GNNs have demonstrated great potential by achieving state-of-the-art

performance in various tasks, they have not been applied to time-series forecasting tasks to such a large extent as

their RNN or CNN counterparts .

When applying GNNs to time-series data structured as graphs, key considerations captured by hyperparameters

include defining node and edge representations, determining the number of message-passing layers to handle

temporal dependencies, choosing aggregation functions for gathering information from neighboring nodes, and

addressing dynamic graph structures for evolving time series . More specifically, while simpler GNN

architectures with fewer layers can suffice for short sequences or stable trends, longer sequences often require

deeper GNNs to capture extended dependencies. Highly variable data patterns may demand more complex GNN

structures, while the presence of strong seasonality may warrant specialized aggregation functions. Finally, the

graph structure should mirror the relationships between variables in the time series, e.g., directed, weighted, or

otherwise, to enable effective information propagation across the network.

2.5. Hybrid Approaches

Hybrid approaches combine different deep learning architectures, bringing together the benefits of each. Generally

speaking, architectures integrating more than one learning algorithm have been shown to produce methods of

increased robustness and predictive power, compared to single-model architectures . Their increased

robustness stems from the fact that, by using multiple types of neural networks, hybrids are less prone to noise and

missing data, which helps them learn more generalizable representations of the data. At the same time, the

combination of different types of neural networks increases the flexibility of the model, allowing it to be more easily

tailored to the specific characteristics and patterns of the given time-series data . A common approach in deep

learning hybrids for time-series forecasting has been to combine models that are good at feature extraction such as

CNNs or autoencoders, with models capable of learning temporal dependencies among those features, such as

LSTMS, GRUs, or BiLSTMs. In Figure 6, a commonly used CNN–LSTM hybrid architecture is depicted.
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Figure 6. A simple CNN–LSTM hybrid architecture—adapted from .

Despite their advantages, hybrid models are often more computationally intensive, leading to longer training times

and demanding more resources. Additionally, hyperparameter tuning becomes more challenging due to the

increased complexity and the need to optimize settings for multiple components. They should, therefore, be

considered mostly in cases where simpler models do not perform adequately.
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