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As the urban population grows, so does their energy consumption, making efficiency critical to mitigate emissions and

resource use. Thus, spatial and transport planning must include energy efficiency and their strategies, as these are vital to

urban sustainability. In this sense, compactness has been shown to have many positive aspects that serendipitously go

much in line with Jacobs’ ideas. The urban environment is expected to host a growing number of dwellers in the coming

decades, and compact urbanism is one possible solution to keep energy consumption under control while providing all the

benefits of proximity.
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1. Eco-Districts: Harvesting Renewable Energy within the Built
Environment

The development of more ecologically based and liveable cities has been advocated as a priority when aiming for

sustainability  Integrating renewable energies into spatial planning, i.e., the creation of eco-districts, was suggested in 

 as a possible path to achieve this goal. Eco-districts should aim not only for their own energy independence but also to

exchange surpluses with neighboring districts . However, studies by Lombardi and Trossero  and by Bracco et al. 

showed that self-sufficiency may be hard to achieve on a large scale, as it requires harnessing multiple renewable energy

sources locally and the means to deal with their intermittencies.

Solar power is a renewable energy source that can be harvested in the urban environment and is a prime candidate for

eco-district development. Integrating solar systems into the built environment can have several advantages, e.g.,

exploiting unused urban surfaces, limiting losses associated with long-distance transmission of electricity, and creating a

more resilient electric network, capable of supporting extreme weather conditions . Incentives for the installation of

solar photovoltaic energy and solar energy solutions in cities are a possible policy to foster a transition to eco-districts 

. Indeed, a study in the city of Daejeon, South Korea, found that the citywide deployment of solar energy via rooftop

photovoltaic panels could fulfil over half of the city’s energy needs . A similar study in San Francisco, USA, found

slightly lower but still significant savings, namely, 23–38% . For an in-depth review on the deployment of renewable

energy sources in urban areas, see .

2. Urban Sprawl

Urban sprawl is an extensive low-density, single-type land use that creates a lack of continuity and directedly impacts

spatial, transport, and environmental planning . Strong negative correlations exist between urban sprawl, energy

consumption, and emissions . Sprawled city development leads to large commuting distances, which in turn requires

extensive roads that inevitably end up congested by excessive private car use. Other consequences are an increase in

both air and noise pollution, a significant reduction in public transport ridership, and negative socio-economic

consequences . Studies  showed the clear effects of residential location on traveling distances,

modal share, and transport energy consumption. Dwellers of sprawled suburbs have the worst accessibility and are

restricted to motorized transport modes, as walking or cycling is not possible with homes being so distant from

destinations. Consequently, transport energy consumption is high, as motorized private transport remains the best (most

of the time the only) modal choice option for suburbs dwellers .

To avoid deepening the negative consequences of urban sprawl, cities must stop planning strategies that can result in

sprawled neighborhoods and fight existing sprawl with policies that can infill central urban spaces . The solution

might lie in the past, within the utopian city plans developed by Howard or Le Corbusier . A study by Monteiro

et al.  compared a real city with sprawled districts with its redraft as a Garden City. Results showed that the Garden

City layout improved accessibility to urban facilities and jobs by 41%, which can directly lead to a reduction in transport

[1] [2]

[3]

[4][5] [6] [7]

[8][9]

[10]

[11]

[12]

[13]

[14]

[15][16]

[17][18]

[17][19][20][21][22][23] [24][25]

[26]

[24][25]

[18][26][27][28]

[29]



energy consumption and better public transport planning. This result provides a glimpse of what can be gained by

planning cities and their expansions in a more thoughtful way.

An urban compact design is usually seen as a sustainable urban form . Compact development leads to densification

and mixed land use, which reduces distances and improves accessibility. These efficient land use policies reduce

commuting time and private car use, directly impacting transport energy consumption . A study by Zahabi et al.

 found statistical significance between built environment variables and transport emissions in Montreal, Canada: A 10%

increase in accessibility to public transport, density, and mixed land use results in a 3.5%, 5.8%, and 2.5% reduction in

GHG, respectively. Likewise, a study on the Puget Sound region, Washington, USA, revealed that a 100% increase in

mixed land use, residential, and intersection density in urban areas would reduce transport emissions by 31.2–34.4% .

Stone et al. (2007)  found similar results and highlighted the importance of compactness in reducing VMT. Wang and

Zhou et al. (2017)  presented a literature review on the relationship between the built environment and travel behavior

in urban China. The authors confirmed a strong connection between high density and mixed land use with shorter trips

and larger active modal shares. In contrast, residents in the suburbs spend more time communing and have greater

motorized transport dependency. Wu et al.  used survey data with over 22,000 traffic trip samples from nine streets in

Ningbo, China, to analyze transport energy consumption with a regression analysis. With respect to built environment

variables, they found that an increase of 1% in population density, mixed land use, and road intersection density lead,

respectively, to decreases of 0.094%, 0.415%, and 0.079% in total transport energy consumption.

Although several studies show a positive impact of mixed land use and sprawl reduction on energy consumption, other

aspects may arise. If, on the one hand, mixed land use can decrease transport energy consumption; on the other hand, it

can increase overall building energy consumption, making it important to understand the relationship between the spatial

arrangement of buildings in a high mixed land use zone and their electricity demands . Similarly, densification and infill

can compromise perceived neighborhood pleasantness . It is thus important that urban planners and municipal

authorities understand and analyze the positive and negative consequences of planning strategies and policies before

fully committing to them.

3. Densification and Infill

Densification, i.e., the increase in population density, and infill, i.e., rededication and development of previously derelict or

underused land to new land uses or construction, of urban conglomerations may come in many guises. It can lead to

reductions in transport energy consumption and environmental impacts .

Transit-oriented development (TOD) is a medium to highly dense, mixed land use urban design concept in which public

transport-based mobility defines the urban planning, with public transport catchment areas below 600 m . A

study by Nahlik and Chester  on the impact of TOD on VMT showed that residents of TOD areas tend to drive less

compared to residents of non-TOD areas. The impact of a TOD solution in Las Vegas was analyzed by Nahlik and

Chester ; the authors concluded that it could decrease GHG emissions by 470,000 t of CO  equivalent per year and

reduce PM -equivalents and smog formation by 28–35%. Silva et al.  evaluated the energy implications of six urban

development alternatives for the city of Porto, Portugal (infill, consolidated development, modern development, multi-

family housing, TOD, and green infrastructure), having found that TOD comes on top, with a 15% reduction in transport

travel, followed by consolidated development, with 9% reduction.

Concerning infill, Monteiro et al.  analyzed the infill potential in the city of Coimbra, Portugal, strictly following the

Municipal Master Plan and national regulations for buildings. They found an increase of 36% in the potential per capita

active modal share and a reduction of 76% in transport energy consumption in comparison to the real city, proving that the

infill is a viable strategy to combat urban sprawl.

4. The D-Variables of Compact Planning

The D-variables were proposed to guide planners when considering a densification or infill strategy . Their impact on

transport energy is as follows :

D-ensity measures: higher population and job density can reduce the number of trips and trip length, as origins and

destinations are closer to one another.

D-iversity measures: high mixed land use can reduce motorized transport and encourage active transport.
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D-esign measures: network design can reduce motorized traffic, e.g., street networks with a large number of intersections

decrease motorized traffic and network distances and encourage active transport modes.

D-estination accessibility: higher number of urban facilities and employment opportunities reduce trip distances and trip

numbers and increase the viability and convenience of active transport modes.

D-istance to transit: adequate coverage of catchment areas for public transport reduces private transport and incentivizes

active mobility.

To measure the impact of these variables, statistical models are commonly used and results are typically presented in

percentage changes between the scenarios being studied . Although these studies provide important prediction data,

their practical application is still limited . Stevens  highlights that planners and researchers

“should probably not automatically assume that compact development will be very effective at achieving that goal. If
anything, planners should probably assume for now that compact development will have a small influence on
driving, until and unless they are given a compelling reason to believe otherwise. At a minimum, planners and
municipal decision makers should not rely on compact development as their only strategy for reducing vehicles
miles travelled unless their goals for reduced driving are very modest and can clearly be achieved at a low cost.”

The above is a warning that infill and densification are not universal solutions to reduce transport energy consumption,

due to both local constraints and densification itself . A study on perceived neighborhood physical pleasantness

showed that, in general, people prefer detached and single-family housing . Indeed, the authors of  found that, in

response to this market demand, development trends on a dynamic tourist coastal privileged detached urbanism, rather

than compact buildings.

As different strategies provide different results, so do different cities behave differently in response to those strategies,

further emphasizing the importance of local context when considering an urban layout. As  highlights, distinctions

should be made according to urbanization levels and dynamics, history, culture, and social and economic inequalities.

5. Urban Public Spaces

Urban public spaces, i.e., outdoor or indoor spaces with free public access where people can gather or pass through (e.g.,

parks, squares, streets, public shopping malls, streets, walkways), are an essential part of a city’s built environment 

. If urban public spaces offer some protection against motorized traffic, people tend to feel more secure, comfortable,

and less annoyed . Research suggests that policymakers and municipal authorities should focus on the creation of

inclusive and safe urban public spaces . Existing urban green infrastructure (such as parks and urban forests) should

be protected and new ones should be promoted and built .

Additionally, retrofitting renewable energy sources in urban public spaces should become a common norm . Passive

strategies that use the intrinsic characteristics of the materials composing the built environment are being studied and

implemented for higher energy efficiency and CO  emissions reduction . The use of green areas and vegetation, as

well as cool and reflective materials, is well documented . A study by Rosso et. al.  tested the application of

photoluminescent materials on the built environment, for example, on sidewalk pavements, and demonstrated that it can

be used as a passive strategy to reduce energy consumption by contributing to public space lighting with no energy

consumption. Similarly, Akbari and Matthews  evaluated the installation of cool pavements to mitigate summer urban

heat islands and improve outdoor air quality and comfort. Nevertheless, although the energy efficiency and thermal

comfort capabilities are clear, using cool coatings for buildings and city infrastructure may cause increased glare to

pedestrians and increase walking discomfort . Pavement energy harvesting is considered to be a sustainable energy

source, with the potential to yield efficiencies of around 40–65% . Heat-harvesting pavements and road pavements

capable of converting vehicles’ mechanical energy into electric energy  have also been proven as possible energy

recovery solutions. However, energy-harvesting pavements require more examination to assess their power output,

durability, and lifetime .

6. Urban Geometry and Buildings Energy Consumption

Buildings energy consumption can be evaluated based on four main factors: urban geometry, building design, system

efficiency, and occupant behavior . The focus is on the design and form of the cities, i.e., the urban geometry, the

intersecting factor of urban planning, and building energy consumption. Urban geometry and morphology typically relate
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to the availability of daylight, outdoor temperature, wind speed, and air and noise pollution , all of which can create

microclimates within a certain urban environment, such as urban heat islands (UHI) and street canyons (SC). It also

influences building energy consumption patterns, heat losses, and solar exposure . Thanks to computing

advances, simulations of the built environment and urban form become possible, providing an important theoretical base

for the relationship between urban geometry and building energy consumption .

A study by Silva et al.  used a spatially explicit methodological framework based on neural networks to assess the

effect of urban form on energy demand. Results show that urban form can explain around 78% of the variation in energy

use, with features such as number of floors and mix of uses as the most relevant. Studies using digital elevation models

(DEMs) are also an important part of the research regarding the relationship between the urban environment and building

energy consumption . Shaping and grouping buildings are long known ; the novelty of recent research is that

computer capabilities now enable quantitative analyses and comparisons between different urban forms. A study by

Taleghani  analyzed the impact of thermal comfort on energy use in the Netherlands, based on different urban block

types. The authors concluded that between single, linear, and courtyard urban blocks layout, the three-story courtyard

presented the best results, with 22% less use of energy and 9% less thermal discomfort in comparison to the single urban

blocks layout.

The impact of densification from high-rise construction can also be estimated. Densification has been associated with

lower per capita energy use, unlike detached housing, whose heat-energy efficiency is low . However, tall

buildings that are too close mutually shade each other, reducing their access to natural light and negatively impacting

energy efficiency , creating a push–pull effect. Building solutions, such as improved thermal insulation of the building

envelope, can help mitigate these compactness issues . Actual figures on building energy demands can be estimated

from 3D geometric models and data on building construction, as demonstrated by Eicker et al. . These authors found

that separating buildings can increase energy demand for heating by 10–20% and reduce renewable energy integration

by up to 50%, while mutual shading can increase heating energy demand by 10%. Because of the above findings, some

authors proposed moderate compactness as a compromise solution between compact and detached development 

.

Harvesting wind within the urban environment has also been an active research topic recently . Gil-García et al. 

analyzed the potential for harvesting urban wind in the region of Cádiz, Spain, and found that over 68,000 kWh/year could

be generated, for an investment return rate of just six years.

Passive solar design should also be incorporated into house plans at the design stage, as suggested in . Cheng et al.

 developed 18 models to assess the solar potential of urban geometric types, based on the built form, site coverage,

and land plot ratio. Other estimations of solar potential based on the urban built environment include . Urban

geometry can also impact the energy collected from facades and roof tops, with the potential to improve the thermal

comfort of buildings .

The attention that UHI and SC have received from researchers in the last decades justifies a more in-depth review of

these topics, which is carried out in the next two subsections.

6.1. Urban Heat Islands

The development of urban areas usually leads to a reduction in green areas, an increase in waterproof surfaces, the use

of high solar absorptance materials, and a reduction in natural ventilation. These are all factors that can lead to an urban

heat island effect, as they change surface albedo, emissivity, and evapotranspiration . The UHI effect can be defined

as a thermal phenomenon in which temperatures in urban cores are higher than in their rural surroundings . It

has an impact on energy efficiency  because increased temperatures raise the energy needs for cooling .

An analysis of the UHI effect and microclimate variability in Hong Kong found clear connections between urban

morphology and local meteorological factors and concluded that the degree of the UHI phenomenon is more severe in

areas of high public activity and heavy transportation .

Strategies to reduce the UHI effect include the use of materials with high albedo ratings for surfaces such as pavements

, the creation or regeneration of urban waterbodies , and the use of vegetation cover .

Urban green spaces can contribute to reducing UHI effects  and are one of the most effective solutions in

comparison to other mitigation strategies . A study by Das et al.  quantified the cooling effect of urban parks in a

tropical mega metropolitan area in India. Findings revealed that urban parks help regulate outdoor temperature, an effect

that is proportional to size and greenness. Correct conservation of urban parks is thus essential for climate mitigation in

tropical cities . Further evidence that urban greenery is important in regulating the UHI effect can be found in 
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. Vegetation solutions can come in many guises, such as green urban parks , urban forests ,

buildings roofs and facades , and street sidewalk vegetation . Quantitative results include that of

Klemm et al. , who found that a 10% tree cover in a street can lower average radiant temperature by about 1 °K, and

, , in which the combination of different vegetation solutions is examined, having found such combinations can

achieve reductions in temperature between 1.5 and 2.0 °C  or 2.0 °C , along with improving the outdoor

environment and thermal comfort .

Regulating outdoor temperature can also reduce building energy consumption. In some studies , an up to 10%

reduction was found. Urban parks can directly reduce building energy consumption, but only within a certain radius of

around 300 m, according to Kim et al. (2019) . Another study on the cooling effect of urban parks was carried out by

Xu et al. , who evaluated the situation in Beijing. The best results were achieved by the combination of manmade

shading devices, trees, grass, and waterbodies, which together can reduce heating up to 102,069 J.m  during the period

between 10:00 h and 16:00 h. A study by Kaloustian and Dias  in Beirut, Lebanon, found that areas with larger garden

fractions can have a difference of up to 6 °C cooler temperatures in comparison to surrounding denser areas. This can

lead to lower cooling energy demands of 270 W/m  (80 W/m  vs. 350 W/m ). Similar results were obtained by Brown et al.

(2015) , who tested the Park Cool Islands (PCI) design of urban parks in five cities. Results show that reductions

between 52 and 60 W/m  could be achieved in the cities of Alice Springs, Australia; Kyoto, Japan; and Toronto, Canada,

demonstrating that decreasing air temperature through a PCI was a moderately effective strategy .

Urban greenery solutions can also make active mobility more attractive by providing more pleasant travel conditions 

.

Another strategy to mitigate UHI effects is to correctly execute high-rise . Compact high-rise buildings can prevent cool

winds from entering city centers and remove the accumulated heat . A study by Wang et al.  concluded that high-

rise building construction in adjacent areas of green spaces should be sparser, instead of more compact alternatives, and

take advantage of existing water bodies, as they can also directly impact building energy consumption. Adjacent

construction areas of urban parks should be planned in accordance with one another, as the impact that each has on the

other should always be taken into consideration .

A study by Okeil  presents a holistic approach to buildings’ energy efficiency based on their form. The author provides

a systematic comparison and an evaluation between the urban built environment and energy efficiency by maximizing

solar exposure in winter and reducing heat gains in summer to mitigate UHI effects. The result is an optimized urban form

model based on square blocks, with buildings along the edges whose height varies continuously (see  for figures and

details).

6.2. Street Canyons

Street canyon refers to a street flanked by tall buildings on both sides, giving it a canyon-like appearance . SCs

can cause changes in wind, air quality, and temperature , creating a microclimate within the SC and its

surroundings. These effects depend on street orientation, aspect ratio, materials albedo, and obstruction angles 

 and typically aggravate climate comfort, both indoor and outdoor. SCs are a very complex phenomenon but

essentially their main effect is to increase the heat island effect . Albeit canyons can increase shading,

the reflectivity of buildings traps heat outdoors due to parallel facades, increasing outdoor temperature . E-W-

oriented canyons are particularly stressful in this respect because they receive sunlight the whole day . Concerning

indoor comfort, canyons can increase building climatization energy spending by up to +30% for offices and +19% for

housing , depending on canyon geometry.

Pollution is another concern, as buildings shield the outdoor space from all winds (except those flowing parallel to the

street), causing vortices between buildings that stop the pollutants from naturally dispersing . A study in

Athens, Greece, showed that the potential for natural ventilation for both single-side and cross-ventilation is seriously

reduced within canyons by 82% and 68%, respectively . When wind flows parallel to the street, pollution escapes but

the wind chill effect is exacerbated, causing outdoor discomfort and additional needs for heating in the buildings in winter

. The placement of deciduous trees and design features, such as high aspect ratios, larger street width, galleries, and

overhanging facades, can mitigate the SC effect and improve outdoor thermal comfort . Narrow streets

can, however, limit overheating in the summer, and this knowledge should be considered in due context when planning

new neighborhoods.

Urban development policies need to take UHI and SC effects into account and make proper use of effective ways to

reduce excessive urban heat. Achieving this goal requires a comprehensive understanding of these effects in their local
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and regional context. Ideally, building density, urban surface fraction, building materials, and canyon structure should all

be considered in urban design together with the characteristics of the city’s climate .

7. Additional Challenges in Developing Countries

In developing countries, lack of infrastructure creates added difficulties, and some authors suggested that energy

sustainability strategies must go hand-in-hand with sanitation, solid waste management, and food security strategies to

eradicate poverty .

Rapid urbanization and climate change are worsening the vulnerability of undeveloped urban areas of the global south

. As societies evolve from the primary sector to the secondary and tertiary ones, more full-time, higher-income jobs are

created. Given that economic growth is correlated with transport energy consumption and CO  emissions ,

urbanization and development are expected to increase emissions in developing countries . Despite the wide

promotion of built environment sustainability, these countries lack the means and opportunities to make an adequate

energy transition, and thus, this transition remains far from implemented in most developing countries . Indeed,

and in practice, research in India has shown that the increase in private transport between 1981 and 2005 accentuated

environmental degradation .

Two studies on African cities show that, even though globalization brought ideas and policies derived from developed

countries, those cities still face additional challenges , making the transition to sustainable energy not as

straightforward as research from the global north might suggest. Cities in Africa are very unique and diverse in culture and

other contextual issues, requiring different perspectives on how to make that transition . Challenges relate, among

others, to insufficient and inconsistent data , as well as weak governance systems and high percentage of informal

economic activities, which hinder the implementation of the necessary strategies , mostly due to the mismatch

between the availability of resources and their fair distribution. The authors of  summarize the concerns that African

countries are facing into two main groups: (a) general barriers in developing countries—basic needs, not fully

implemented sustainability, and inequitable resources distribution; (b) barriers specific to African countries—developing

economics, urban poverty, population and poor utilities, and the dichotomy between the different countries.

In general, the studies  suggest that the widespread use of renewable energy resources and a focus on

developing a sustainable built environment would highly benefit developing countries, acting as a step to minimize poverty

rates and to overcome current and future environmental problems.
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