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The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance

in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million

people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the

research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-

throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective

therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially

be employed as research guides to identify novel antiviral agents. 
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1. Introduction

The identification of effective therapeutics for COVID-19 has been an important focus of research across the world ever

since its emergence. Interestingly, with two years of effort in this domain, many approaches have been taken to recognize

and develop potential candidates against this virus, with some being more efficient than others. This fast-paced pursuit for

the identification of therapeutics has brought in-silico and computational modeling into the limelight, mainly driven by the

inefficiency of experimental high-throughput screening (HTS) for COVID-19 drug discovery . Computational modeling

holds the key to this bottleneck by providing a more efficient solution to expedite drug discovery or repurposing for the

COVID-19 pandemic by evaluating the biological interactions of drugs with viral molecular components based on existing

datasets . There are two types of computational approaches towards identifying therapeutics: target-based and

disease-based. The former generates information on the drug–target interaction, while the latter utilizes existing

databases to determine new indications of existing drugs via comparisons with disease characteristics .

Another popular mode of drug discovery is virtual screening (VS), an approach that combines initial computing followed by

experimental targeting of specific biomolecules, such as DNA, protein, RNA, or lipid molecules, for the purpose of

inhibiting or activating them . This facilitates the rapid identification of viral proteins, with their structures determined

using experimental and computational methods. Unlike conventional vaccine discovery, this approach provides a cost-

and time-efficient route towards the identification of potential drug candidates for several microbial pathogens. Reverse

vaccinology (RV), an approach that uses the genome to design vaccines, has revolutionized the field, as bacteria no

longer need to be cultured to identify vaccine targets . As a consequence, all putative target protein antigens can be

identified, instead of being restricted to those isolated from bacterial cultures. Considering these benefits, researchers are

focusing on developing RV prediction algorithms. Currently, there are no licensed drugs suitable for such viral infections.

Consequently, drug repurposing has become the best course of action in this scenario, involving the effective adaptation

of existing antiviral agents for alternative treatments. Several FDA-approved drug candidates that have been previously

applied for SARS CoV1 and Middle Eastern Respiratory Syndrome (MERS) management are currently being investigated

for SARS CoV2 therapy. Drug repurposing plays a specific role in drug discovery by identifying new therapeutic uses for

already studied drugs . Globally, more than 500 clinical trials of repurposed drugs have been registered and a

further 150 have been initiated . The current research studies are mainly focused on the utilization of antiviral drugs and

repurposing strategies, as well as vaccine development . The WHO roadmap  provides the

necessary guidelines and support for regulation, ethics, and platform utilization to ensure the efficient development of

vaccines and treatments.

Most coronaviruses share the same genetic features. As a result of their large genome size (about 27–32 kilobases), they

are classified as RNA viruses with positive sense. Because they have overlapping ORF1a and ORF1b polyproteins, their

genomes are not segmented. Polyproteins, as shown in Figure 1, arecomposed of 16 non-structural proteins (NSPs) and
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structural proteins in the form of spike (S), envelope (E), membrane (M), and nucleoproteins (N) . After infection of host

cells, different CoVs have been shown to undergo genome recombination . This recombination contributes to their

evolution into new types, which could include new intermediate hosts. As a result, CoVs have strong adaptation ability and

the ability to be involved in a wide range of species; however, the identification of these viruses’ spike glycoproteins is

crucial for vaccine development. In addition, the use of in-silico studies to design new antiviral drug candidates is

beneficial . This is why the targeting of SARS CoV2 spike (S) proteins, polyproteins, or other viral proteins for

vaccine and therapeutic development is becoming increasingly essential approach .

Figure 1. The SARS CoV2 virions structure. Schematic representation reproduced with permission from reference .

Copyright © 2021 Informa UK Limited, trading as Taylor & Francis Group.

Alternatively, natural plant-based bioactive compounds have been proven to possess antiviral properties that combat

infection at various stages of the viral replication cycle, including virus entry inhibition into the host cells . In

addition to therapeutic identification, delivery is a crucial part of drug discovery. Nano-carriers hold huge potential in drug

delivery and can be easily adapted for vaccine development or antiviral delivery targeting specific peptides of CoV protein

. Many datasets on the structure–activity relationships and toxicity of nano delivery systems are available as a

consequence of the booming popularity of this field, which can be adapted for the current pandemic as well .

2. In Silico Modeling in Vaccine Development: A SARS CoV-2 Case Study

While antiviral identification and development help in managing viral infections, vaccine development will offer herd

immunity in the longer run . Currently, there are more than 20 vaccines being tested in clinical trials. The World

Health Organization (WHO) is regularly updating its list of the developed vaccines . COVID-19 vaccines have been the

subject of several studies . As a result of previous outbreaks of SARS CoV and MERS CoV, global industry

leaders and researchers have attempted to develop a suitable vaccine . The vaccine development approaches for

SARS CoV2 include live attenuated virus , protein-based vaccines , viral vectors 

, DNA vaccines , mRNA vaccines , and other self-assembling vaccines . The S protein/gene is

the most preferred target site in SARS vaccine development, meaning the same strategy could potentially be useful in

developing a SARS CoV2 vaccine .

2.1. Molecular Modeling of the Designed Multi-Epitopic Vaccines

Informatics tools are as convenient and cost-effective as in silico studies  and could help in designing a multi-epitope

vaccine for COVID-19 treatments . The potential peptide epitopes (antigenic and immunogenic) can

help in facilitating the design of vaccines. The candidate vaccine constructs consist of distant epitopes. These epitopes

are computed using B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) based on SARS CoV2

proteins . The candidate vaccines are designed by fusing these epitopes with linkers . These linkers help

to stabilize the protein structure by producing a flexible conformation, protein folding, and functional domain separation.

The binding affinity of the potential candidate vaccines with immune receptors was studied using the molecular docking

approach.

2.1.1. Molecular Docking of the Construct SARS CoV2 Vaccine with the Related Antigenic Recognition Receptors
(TLR-3, MHC-I, and MHC-II)
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Dong et al.  revealed the binding affinity between the candidate vaccines and antigenic recognition receptors of toll-like

receptor-3 (TLR-3, 2A0Z) and the major histo compatibility complex (MHC-I, 4WUU), and MHC-II, 3C5J) present on the

immune cell surfaces , which were evaluated using molecular docking techniques. The ClusPro server,

https://cluspro.bu.edu/login.php?redir/queue.php (accessed on 20 October 2021), was used toperform the docking

analysis. This server computed 44 models based on the electrostatic interaction and the desolvated energy. The server

determined a total of twenty-nine model complexes each for TLR3, MHC-I, and MHC-II and the COVID-19 vaccine. The

lowest binding energy scores of −1156.2, −1346.8, and −1309 kcal/mol were chosen and are represented in Figure 2.

The PatchDock server (https://bioinfo3d.cs.tau.ac.il/PatchDock/ (accessed on 20 October 2021)) was used for further

docking evaluation to confirm the binding affinity between the vaccine construct and the suggested receptors . The top

10 complexes were then refined using the FireDock algorithm , which predicts the optimal complex with the help of

energy functions. The best model complex of TLR3, MHC-I, and MHC-II receptors and the vaccine construct interaction

(red color) showed global energy results, attractive van der Waals energy (VdW) results, repulsivevan der Waals (VdW)

energy results, and atomic contact energy values (Figure 2, Table 1), verifying the stability of the docked complex.

Figure 2. The ligand–receptor docked complex:(A,C,E) the docking interaction of the vaccine construct (red color) with

the TLR-3, MHC-I, and MHC-II receptors (other colors), as assessed using ClusPro software;(B,D,F)the docking

interaction of the vaccine construct (red color) and TLR-3, MHC-I, and MHC-II receptors (other colors), as assessed using

PatchDock . Permission and copyright © from Frontiers in Immunology (www.frontiersin.org (accessed on 20 October

2021)).

Table 1. Static interactions of vaccines with TLR3, MHC-I, and MHC-II.

Parameters TLR3 MHC-I MHC-II

lowest binding energy score (kcal/mol) −1156.2 −1346.8 −1309

global energy −38.40 −22.97 −27.52

attractive van der Waals energy (VdW) −26.02 −26.84 −26.86

repulsive van der Waals energy (VdW) 8.62 12.82 10.93

atomic contact energy −11.06 −1.79 0.77

2.1.2. Molecular Docking of the SARS CoV2 Vaccine Construct with the Antigenic Recognition Receptors (ACE-2,
TLR2, TLR4, HLA Alleles)

The candidate vaccines were designed and then tested with different epitopes . The construct vaccines, which have

high antigenicity and are expected to produce high antibody titers, were combined with multi-epitope vaccines in order to

enhance the immune response . Three different construct vaccine constructs were used, with one comprising the

top-scoring CD4 and CD8 epitopes lying in the S1 domain and the second one formed by taking two epitopes from the S1
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domain and two from the S2 domain of the spike SARS CoV 2 protein, which represents the MHC-I and MHC-II binders.

The last vaccine was created by combining a B-cell epitope with the second vaccine using a different adjuvant. The

candidate vaccine constructs were also docked to different type of receptors, such as the ACE-2 receptor using PDB ID:

3sci, TLR2 with PDB ID: 2Z7X, TLR4 with PDB ID: 4G8A, B-cell receptor (BCR) CD79 using PDB ID: 3KG5 and HLA

super family alleles; HLA A*02 01 using PDB ID: 4U6Y, the other HLA B*51 01 using PDB ID: 4MJI, and also class II HLA-

DRB1*1402 using PDB ID: 6ATF , representing broad-spectrum peptide-binding repertoires.

Molecular Docking of the Candidate Vaccines with ACE-2 Receptors

Vaccine 1 was docked with the ACE-2 receptor using the HADDOCK server (Guru Interface and refinement interface) .

The server clustered 36 structures into seven different clusters. Vaccine 2 was also docked with the ACE-2 receptor, while

the HADDOCK server clustered 18 structures into three clusters. While working on vaccine 3 and the ACE-2 receptor, the

server clustered 22 structures into five clusters. The top cluster score, Z-score, and water-refined models are represented

in Figure 3. The latter (as shown in Figure 3) represents docking interactions of the h-ACE-2 protein complex (red) with

the proposed multi-epitopic vaccines 1, 2, and 3 (blue), which were performed using the HADDOCKserver. The static

interaction parameters of ACE-2 with the three construct vaccines 1,2, and 3 are displayed in Table 2.

Figure 12. The docking interaction of the human ACE-2 protein complex (red) with the proposed multi-epitopic COVID-19

vaccines (1–3) representing in subfigures (A–C) (blue) respectively . Permission and copyright © from

www.frontiersin.org (accessed on 20 October 2021).

Table 2. Static interaction parameters of ACE-2 with vaccines 1, 2, and 3.

Parameter ACE-2/Vaccine 1 ACE-2/Vaccine 2 ACE-2/Vaccine 3

HADDOCK score (kcal/mol) 39.8 +/− 29.1 0.3 +/− 9.8 147.5 +/− 15.0

Z-score 1.6 1.3 1.2

water-refined models 18% 9.0% 11%

Molecular Docking of Vaccines with the Potential TLR2 and TLR4 Receptors

Toll-like receptors (TLR) TLR2 and TLR4, which are found on the cell surfaces, are activated by viral glycoproteins. They

detect structural and non-structural proteins of the virus, suggesting the need to study cytokine release and inflammation.

These TLR agonists have been shown to enhance the immune system’s response and viral clearance . TLR2 was

docked with the three constructed vaccines. The interaction between vaccine 1 and TLR2 revealed 40 structures in six

clusters. Similarly, the server clustered 80 structures into 12 clusters for the interaction of vaccine 2 and TLR2. Likewise,

the HADDOCK server clustered 136 structures into 10 clusters; the top-scoring model, z- score, and the total water-

refined model results from the interactions of TLR2 with vaccines 1, 2, and 3 are depicted in Table 3. The three candidate

vaccines also interacted with TLR4.In the case of the interaction of vaccine 1 and TLR4, the server clustered 157

structures into 13 clusters. Similarly, vaccine 2 interacted with the TLR4 receptor, clustering 47 structures into nine

clusters. Likewise, the HADDOCK clustered 93 structures into eight clusters for the interaction between vaccine3 and

TLR4. The top HADDOCK cluster scores with Z-values and the water-refined models are presented in Table 3. The

HADDOCK refinement interface was then used to refine the top cluster models. The 20 obtained structures were

clustered into one single cluster. The final cluster consisted entirely of water-refined models. The observed statistics in the

interaction of vaccines 1, 2, and 3 from their refined clusters were also studied  and the complexes are shown in

Figure 13 and Table 3. Figure 13 illustrates the interactions of human TLR2 and TLR4 proteins (red) with the candidate

multi-epitopic COVID-19 vaccines 1, 2, and 3 (blue).
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Figure 4. The interactions of human TLR2 and TLR4 proteins (red) with the candidate multi-epitopic COVID-19 vaccines

(1-3) (blue) representing in subfigures (A-F), respectively . Permission and copyright © from www.frontiersin.org

(accessed on 20 October 2021).

Table 3. Statics interaction parameters of TLR2 and TLR4 with vaccines 1, 2, and 3.

Parameter
Vaccine 1 Vaccine 2 Vaccine 3

TLR2 TLR4 TLR2 TLR4 TLR2 TLR4

HADDOCK score
(kcal/mol) 4. 2 +/− 20.8 37.9 +/− 7.8 23.7 +/− 12.1 16.8 +/− 23.4 16.7 +/− 14.0 23.3 +/− 5.7

Z-score 1.2 2.2 1.3 1.6 1.8 1.3

water-refined models 20.0% 78.5 40.0% 23.5 68.0% 46.5

Molecular Modeling Interactions of the Suggested Vaccines with HLA Alleles

Studies showed that the docking analysis interaction of the proposed vaccine 1 and the HLA A allele  with the water-

refined models was59.0 percent. The HADDOCK server clustered 118 structures into 17 separate clusters. Likewise, the

server clustered 97 structures into 17 clusters, depicting 48.5 percent of the water-refined models in the case of vaccine 2

and the HLA A allele. Similarly, the HADDOCK server clustered 187 structures into three clusters for vaccine 3,

representing 93.5 percent of the water-refined models. The best HADDOCK results with z-scores are represented in

Table 4. Here, 115 structures were clustered into 15 separate clusters using HADDOCK server for the interaction

between vaccine 1 and the HLA B allele, representing a total of 57.5 percent of the water-refined models. Additionally,

HADDOCK clustered 84 structures into nine clusters for the interaction of vaccine2 and the HLA B allele, depicting 42

percent of the water-refined models. The HADDOCK server aggregated 168 likely structures into 10 clusters representing

84 percent of the water-refined models for vaccine 3. The top-scoring cluster and the static parameters are depicted in

Table 4. Moreover, when vaccine 1 was docked into the HLA DRB1 allele, the HADDOCK server showed 67 probable

structures clustered into different clusters, accounting for 33.5 percent of the water-refined models. Likewise, the

HADDOCK server clustered 64 structures into 11 different clusters for vaccine 2 and the HLA DRB1 allele, representing32

percent of the water-refined models. HADDOCK clustered 93 probable structures into 13 different clusters for vaccine 3,

representing 46.5 percent of the water-refined models. The scoring parameters are shown in Table 4. The HADDOCK

refinement interface refined and then clustered the top cluster model from 20 structures into one single cluster,

representing 100 percent of the water-refined models. The observed statistics for the interactions of vaccines 1, 2, and 3

with their respective refined clusters were also studied . Finally, the vaccine mRNA was improved using the Java

Codon Adaptation Tool in order to ensure that the designed vaccines were effective in a specific expression system.

Table 4. Static interaction parameters of HLA A alleles, HLA Balleles, and HLA DRB1 allele with vaccines 1, 2, and 3.

Parameter

Vaccine 1 Vaccine 2 Vaccine 3

HLA A
Allele

HLA B
Allele

HLA
DRB1
Allele

HLA A
Alleles

HLA B
Alleles

HLA
DRB1
allele

HLA A
Alleles

HLA B
Alleles

HLA
DRB1
Allele

HADDOCK
score

(kcal/mol)

26.5 +/−
2.7

57.5 +/−
12.8

27.8 +/−
6.0

57.5 +/−
12.8

18.7 +/−
8.7

24.8 +/−
25.6

34.7 +/−
1.9

41.2 +/−
18.7

37.1 +/−
11. 8
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Parameter

Vaccine 1 Vaccine 2 Vaccine 3

HLA A
Allele

HLA B
Allele

HLA
DRB1
Allele

HLA A
Alleles

HLA B
Alleles

HLA
DRB1
allele

HLA A
Alleles

HLA B
Alleles

HLA
DRB1
Allele

Z-score 2.5 2.3 2.3 2.3 1.6 1.7 1.1 2.1 −1.5

water-refined
models 59.0% 57.5 33.5 48.5 42 32 93.5 84 46.5
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