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Flowback-produced water (FP) is a waste fluid associated with hydraulic fracturing in unconventional oil and gas

development (UOG). Initially, FP reflects the composition of the hydraulic fracturing fluid, which is referred as

flowback water (FBW). After the initial months of well production, the waste fluid is predominantly representative of

the formation and is known as produced water (PW). 

produced water  hydraulic fracturing

1. Technologies Utilized in Produced Water Treament

The major concern in treating FP for reuse, apart from the cost of treatment, is the removal of pertinent

constituents (see Table 1) that can negatively affect the production of a given oil/gas well. For example, elevated

levels Sr, Ca, Mg and Ba can contribute to the formation of insoluble scales in production tubing, which can

attenuate production rates . Elevated levels of sulfate can also contribute to scaling, as well as provide a

substrate for sulfate-reducing bacteria (SRB) to proliferate. Ultimately, this could lead to the corrosion of tubing

and, as a consequence, environmental contamination along with the clogging of the wellbore, the degradation of

hydrocarbons and the souring of natural gas . Additionally, significant concentrations of B and Fe (>10

mg/L) limit effectiveness of cross-linkers polymerization in fracturing fluid . Lastly, elevated values of TOC, Na,

Ca, Fe and phosphate reduce the viscosity of gel-based fracturing fluids , which can have negative implications

for production well stimulation.

The biogeochemical complexity of produced water requires the implementation of multiple treatment modalities to

effectively remove all the contaminants from microorganisms and heavy metals to organic particulates and

NORMs. The most widely utilized procedures can be categorized as such: chemical oxidation, adsorption,

membrane filtration, electrocoagulation and distillations:

1. Chemical oxidation facilitates the flocculation of volatile and semi-volatile organics, the precipitation of inorganic

compounds, and the eradication of bacteria. Additionally, the use of oxidizing agents leads to the volatilization and

remediation of undesirable odors and colors, respectively. The oxidizing agents most commonly used in FP

treatment include ozone, hydrogen peroxide, chlorinated compounds and permanganate . Advanced oxidation

processes (AOPs) comprise a set of chemical treatments that remove organic matter by reaction and subsequent

degradation with a hydroxyl (OH) group. Furthermore, AOPs are thought to be environmentally sustainable for

chemical oxygen demand (COD) degradation . Recent advances in this technology involve the addition of

nanoparticles to enhance the removal of major organics from fracking wastewater .
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Table 1. Inorganic constituents and other parameters of fracturing waste waters from Bakken Shale and Permian

Basin, the regulated concentration ranges for reuse in well stimulation  and in agricultural and consumption use

. * represents the reported average of three measurements in the study.
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Bakken Shale
Range

(mg/L) 

Permian
Basin
Range

(mg/L) 

Well
Stimulation
(mg/L) 

Agricultural
Use

(mg/L)
(EPA)

Drinking
Water
(mg/L)
(FAO &
EPA)

METAL

Magnesium (Mg) 1530–3790 1630–1950 2000    

Iron (Fe) 0.70–30.20 11 10.00 5.00 0.30

Manganese (Mn) 5.20–17.20 11.00–53.00   0.20 0.05

Aluminium (Al) <LOQ–8.30     5.00 0.05–0.20

Calcium (Ca) 13,140–41,160
10,000–
15,000

2000    

Sodium (Na) 89,100–
189,000

48,000–
54,000

  69.00  

Potassium (K) 3510–9530 570–1100      

Barium (Ba) 6.40–26.30 0.00–16.00 20.00   2.00

Strontium (Sr) 709–2450 730.0–820.0      

Cobalt (Co) 0.030–0.20 N/A   0.050  

Nickel (Ni) <LOQ–3.80 0.020   0.20 0.07

Lithium (Li) 34.50–89.70 18.80   2.50  

Chromium (Cr)       0.10 0.10

Radium 226 (Ra) 527.1–1211
pCi/L

     
5.000
pCi/L

Uranium (U)        
30.00
µg/L

Copper (Cu) 4.60–16.90     0.20 1.00

Zinc (Zn) 2.50–10.10     2.00 5.00

Arsenic (As)   1.1   0.10 0.01
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Bakken Shale
Range

(mg/L) 

Permian
Basin
Range

(mg/L) 

Well
Stimulation
(mg/L) 

Agricultural
Use

(mg/L)
(EPA)

Drinking
Water
(mg/L)
(FAO &
EPA)

Beryllium (Be)       0.10 0.004

Lead (Pb) 0.00–3.50     5.00 0.015

Silver (Ag)         0.10

Molybdenum (Mo)       0.01  

Cadmium (Cd) 0.001–0.031     0.01 0.005

Vanadium (V) 0.60–1.00     0.10  

Thallium (Tl) 0.00–0.20       0.002

Antimony (Sb)         0.006

Rubidium (Rb) 0.30–12.90        

Mercury (Hg)         0.002

NON-METAL

Chloride (Cl ) 21,728–
136,220

111,000–
138,000

30,000–
50,000

92.00 250.0

Bromide (Br ) 91.6–558 1370–1650      

Silicon (Si)   32 35.00    

Fluoride (F )       1.00 4.00

Boron (B) 25.0–260.1   10.00 0.70  

Selenium (Se) 0.10–1.00     0.02 0.05

POLYATOMIC IONS

Sulfate SO ) 0.000–293.0 515–743 500   250

Bicarbonate (HCO ) 35.00–856.0 92–160 300 91.50  

Nitrite (NO )         1.00

Nitrate (NO )       5.000 10.00

Phosphate (PO ) 584 *        
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2. Adsorption is applied for the sequestration of organics and metal contaminants. However, it is more of a

polishing step for other preceding treatment modalities instead of being a sole separation technique on its own. It is

important to note that the adsorption efficiency of various media is mediated by salinity. Activated carbon media are

effective for organic contaminants, whereas, activated zeolite is an effective adsorbent for the removal of scaling

ions such as Ca  and Mg   that are generally present in elevated concentrations in FP (see Table 1). Other

possible absorbents include alumina and organoclays . In recent studies, Sun et al. achieved the removal of

several metal pollutants; for instance, Cu(ll), As(V), Cr (Vl), Cr(ll) and Zn(ll) on Fe-impregnated biochar, a carbon-

rich fine-grained pyrolysis residue .

3. Membrane filtration consists of the separation of a fluid from dissolved substances by a porous surface. This

includes reverse osmosis (RO), microfiltration (MF), nanofiltration (NF), ultrafiltration (UF) and forward osmosis

(FO). RO removes solids by the application of hydraulic pressure to move water molecules through a semi-

permeable membrane; MF allows the physical separation of suspended solids and turbidity depletion via the

retention of particles larger than the micropores in the membranes. UF reduces odor, organic matter and color with

pore membranes on the order of microns. NF offers selective particle rejection based on size and charge, which

lessens multivalent ions, and FO lowers TDS in high-saline brines, benefiting from osmotic pressure and

transporting water molecules through a semipermeable membrane from the less-concentrated feed to the highly

concentrated solution . Some modalities could be applied as treatment technologies on their own, such as MF

and UF; others are steps in a more complex separation process. The obstacles to overcome include the membrane

fooling/clogging due to interactions with VOCs in NF/RO, fouling caused by high Fe concentration in MF/UF, and

scaling in RO  as well as RO’s limitation to ionic strengths lower than that of sea water (approx. 40,000

ppm) .

 

Bakken Shale
Range

(mg/L) 

Permian
Basin
Range

(mg/L) 

Well
Stimulation
(mg/L) 

Agricultural
Use

(mg/L)
(EPA)

Drinking
Water
(mg/L)
(FAO &
EPA)

Ammonium (NH4 ) 44.8–2520 655      

Cyanide (CN )         0.200

OTHER PARAMETERS

pH 4.1–7.2 7.30 6.0–8.0 6.5–8.4 6.5–8.5

TDS 128,300–
388,600

174,213–
212,984

  450 500

TSS 7040 *
6850–
21,820

500    

Total nitrogen          

TOC 311 *
86.25–
184.21

     

Alkalinity (CaCO ) 0–562.8 2345      

Turbidity (NTU) 13 53.4      

DOC 80 *
63.45–
145.71

     

Conductivity (mS/cm)   201.2      

Nonvolatile dissolved
organic carbon (NVDOC) 1.13–3.31        

Total Hardness(mg/L
CaCO ) 31,000–59,000        

Chemical Oxygen demand
(COD) 20,000–79,000        

[9][14][15]
[16][17][18]

[19][20]
[21]

[11]

+

−

3

3

2+ 2+ [22]

[8]

[23]

[22]

[8][9][23][24]

[25]



Produced Water Treatment | Encyclopedia.pub

https://encyclopedia.pub/entry/24877 5/12

4. Electrocoagulation (EC) promotes the precipitation of metals in the form of hydroxides by the addition of direct

current through a metal electrode. This has been shown to be efficient and economically feasible for wastewater

. Previous studies have demonstrated high removals of turbidity, COD, oils and greases by EC. For example,

Kausley et al. reported efficacy in the removal of total organic carbon (TOC) and scaling-causing ions, particularly

Ca , Mg , CO  and HCO , from synthetic PW and PW . The precipitation of metal cations in the form of

hydroxides could be further exploited to make the treatment of FP more economically viable to the industrial sector

through the generation and commercialization of Cu , Mn , Zn , Al , Fe , Ni , Mg , Ca , Na  and several

other metal hydroxides. Moreover, HCl could be produced by hydrolysis of Cl  gas generated during the process

.

5. Distillation is a thermal process in which solid particles are separated from liquid matrix by boiling point

differences. One of the promising variations for brine desalination is multistage flash distillation (MSF). In MSF, the

saline solution is converted into a vapor state and then goes through successive units in which the solution

evaporates and condensates. In each unit, a fraction of the original feed remains as a highly concentrated brine

(see  Figure 1) . The technique produces high-quality fresh water  and is efficient in the treatment of

brackish/sea water. Nevertheless, for future applications in PW treatment, it is suggested to pretreat the inlet water

with chemical softeners, filtrations and/or ion exchange technologies to avoid scaling and fouling, as well as to

upgrade the infrastructure material to stainless steel to prevent corrosion . The latter increases capital costs.

Additionally, the salts produced by this treatment modality can serve as a feedstock for electrocatalytic processes

to produce acids (HCl) and caustic agents (NaOH).

Figure 1. Schematics for multistage flash distillation (MSF)

Many ongoing efforts for the treatment of FP incorporate separation and desalination . Similarly, a common

practice is the utilization of powdered activated carbon (PAC) for the depletion of dissolved organic carbon (DOC),

turbidity and organic components. Other operations include softening hardness ions by the addition of caustic soda

, demineralization through membrane distillation  and removal of organic components by coagulation followed

by ultrafiltration . Furthermore, biologically active membranes help remove organics and salinity . The use of

these techniques in tandem is generally required to remediate FP to a reusable and/or recyclable standard.

[26]

2+ 2+
3

2−
3

- [26][27]

2+ 2+ 2+ 3+ 3+ 2+ 2+ 2+ +

2

[27][28][29][30]

[22] [31]

[22]

[32]

[15] [33]

[34] [9]



Produced Water Treatment | Encyclopedia.pub

https://encyclopedia.pub/entry/24877 6/12

The commercial methods implemented in desalination of seawater, typically membrane-based and thermal-based

, fail to meet the requirements for processing wastewater from UOG. However, the elevated values of TDS

(>50,000) in FP can lead to difficult scenarios when treating the approximately 250 million barrels produced

globally each day . For example, the FP in the Permian Basin has TDS values three to five times higher when

compared to those of seawater (see Table 1) . Common challenges include corrosion, fouling and scaling of the

membrane when precipitation conditions are met .

Forward osmosis allows the separation of water from dissolved solids by employing a semipermeable membrane

and the difference in osmotic pressure as driving force. In contrast to RO, it is believed to be more appropriate for

high-TDS matrices, such as FP . Additionally, FO is a cost-competitive and reliable alternative for wastewater

treatment  that exhibits great potential in removing heavy metal ions, including Cr O , HAsO , Pb , Cd ,

Cu  and Hg   .

A previous study suggested that reusing PW in the energy sector is a better option than surface discharge due to

safety concerns. Alternatively, its authors suggested thermal distillation (TD) as the appropriate treatment modality

. Regardless of being one of the most utilized operations for saline water recycling, TD’s energy consumption

must be addressed when treating PW since scaling may lead to a to insulation of heat exchangers and,

consequently, inefficient heat transfer. Again, the elevated price of anticorrosion materials to build this facility

should be considered, since high costs affect the feasibility at an industrial scale. Similarly, osmotic properties

constrain the application of membrane technologies in highly saline brines .

Recent advances in membrane technology, as well as integration of existing procedures, show promising results in

processing high-TDS watersIn 2018, Sardari et al. demonstrated that electrocoagulation (EC) pre-treatment

followed by direct contact membrane (DCMD) was effective in recovering up to 57% from a sample with a TDS of

135 g/L. However, they suggested a reduction in the sedimentation time for practical applications . Furthermore,

pretreatment with antiscalants such as 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) increased the

performance of carbon-nanotube-immobilized membranes in membrane distillation (MD) . Additionally, Ahmad et

al. (2020) proposed a hybrid technology that incorporates assisted reverse osmosis (ARO), microfiltration and

reverse osmosis—introduced as MF-ARO-RO—for which individual operations enhanced the ability to withstand

different salinity effects and profiles. Although the addition of ARO to the MF-RO system represented an increase in

the total cost, it was presented as the cheapest alternative for high-salinity FP .

Recent studies developed a combined membrane system consisting of an electrodialysis chamber followed by

nanofiltration and membrane distillation (ED-NF-MD), represented in Figure 2. The system facilitated zero liquid

discharge and allowed a water recovery of up to 99.8% with no need for chemical antiscalants . Regardless of

being a laboratory-scale experiment, the novel method has underlying potential in high-TDS waters treatment at

industrial scale.
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Figure 2. Diagram of the integrated ED-NF-MD system. CM: cation exchange membrane; AM: anion exchange

membrane; ED: electrodialysis; NF: nanofiltration; VMD: vacuum membrane distillation.

To summarize, the utilization of different adsorbents and novel materials to prevent scaling and corrosion, as well

as the tandem use of existing commercially available technologies, can facilitate the effective treatment of FP.

Enhancement in the performance of the more sophisticated methods can be achieved by pretreatment with the

well-known membrane filtrations.

2. Costs Associated with Produced Water Treatment

As previously mentioned, the efficacy of FP treatment is inherently important when determining the terminal

destination for the treated water. However, the more influential aspect of assessing the feasibility and sustainability

of FP reuse and/or recycling is operational cost. The cost of deep-well injections ranges from approximately

USD  $0.25/bbl in private wells to approx. USD  $0.50 to 2.50/bbl in commercial wells . Adding the price of

transportation to disposal sites (approx. USD $0.03/bbl/mile) may increase the cost significantly depending on the

location of the storage . In fact, transportation costs can range from USD $2.00–20.00/bbl . Moreover, these

values are expected to become higher due to distances of disposal sites possibly increasing. Additionally,

permitting SWDs is becoming more contentious because of earthquake issues could increase costs. On the other

hand, FP can also be transported via pipeline at an approximate cost of USD $0.25/bbl (personal correspondence

with water treatment provider), yet this requires considerable infrastructure that is generally not established in most

shale energy basins. Typical treatment costs range from USD $3.00 to $30.00/bbl, including storage and transport

[46]
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. Recently, MD modalities were studied for reuse waste waters of HF operations, resulting in costs ranging from

USD $0.11 to $0.90/bbl of treated fluid . Operational costs of RO and FO typically stand at USD ~$1.00/bbl.

Providing an initial cost for the acquisition of these membranes is challenging due to their performance

dependency on influent TDS levels and throughput requirements. In Table 2, the annual cost for FP disposal in

Permian and Bakken is compared to treatment costs, assuming treatment take place in situ based on mobile

treatment modalities.

Table 2. Annual cost for disposal and treatment of FP in Permian Basin and Bakken Shale, assuming both are

performed on-site. * Based on USD  $0.03/bbl/mile trucking cost and an average distance of 20 miles from the

source to the nearest disposal site.
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