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Preceding vehicles have a significant impact on the safety of the vehicle, whether or not it has the same driving direction

as an ego-vehicle. Reliable trajectory prediction of preceding vehicles is crucial for making safer planning.
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1. Introduction

Automated vehicles and advanced driver assistance systems (ADAS) have received a surge of attention in recent years

as they are considered to be an effective solution for traffic congestion and safety . Reliable trajectory prediction of

preceding vehicles is crucial for the planning and decision-making of automated vehicles. Compared to studies of

surrounding vehicles trajectory prediction , preceding target vehicles (PTVs) should receive more attention, which in turn

has a higher possibility of risk to the automated ego-vehicle (EV). Based on the future trajectory of PTVs, the EV can

generate a more comfortable and safe path, avoiding or mitigating the risk of collision .

A major reason for the prosperity of vehicle trajectory prediction algorithms is the availability of public datasets , which

assists researchers in quickly validating their algorithms. Despite these favorable results on public datasets, when the

vehicle trajectory prediction system evaluated, not only should the accuracy of the prediction should be considered, but

also the generalization ability of the established model should be evaluated; that is, whether the model can accurately

predict the trajectory of the vehicle in real road driving. Vehicle-to-vehicle (V2V) is also a source for trajectory prediction

input. However, in the case that the V2V communication technique is unavailable, autonomous vehicles cannot receive

accurate information from surrounding vehicles, and the autonomous vehicles have to deduce the trajectory of other

vehicles through various onboard sensors . Currently, a lot of research has captured PTVs using cameras, LIDAR,

and other sensors in real road driving . However, the sensor is moving because it is fixed to EV, which results in

PTV positions that are not in the same coordinate system. Figure 1 shows the results of the PTV in a moving EV vehicle

coordinate system and a stationary EV vehicle coordinate system, respectively, where the green points represent the EV

position, the gray points represent observed PTV history position, and the red points represent real PTV position. When

EV and PTV are driving at the same speed in the X-axis, PTV is traveling in the Y-axis as observed by the EV sensor. For

this reason, when predicting vehicle trajectories in real roads, it is necessary to focus not only on excellent prediction

algorithms to predict future trajectories but also on methods to obtain historical trajectories of PTVs.
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Figure 1. Relative motion of the PTV.

2. Trajectory Prediction of Preceding Target Vehicles

Vehicle driving is a continuous, time-varying, and dynamic process. Extensive research has been conducted on vehicle

trajectory prediction. For the PTVs’ trajectories prediction, prior works can be divided into two categories: model-driven

methods and data-driven methods .

The model-driven methods include the hidden Markov model (HMM), Gaussian mixture model (GMM), vehicle dynamics

model (VDM), and polynomial model (PM). Ye et al.  proposed a novel vehicle trajectory prediction algorithm named

double hidden Markov of trajectory prediction (DHMTP). The algorithm was based on a hidden Markov model with double

hidden states and predicted the vehicle trajectory at multiple subsequent moments. Wiest et al.  built a mixture

Gaussian–Bayesian model-based variational probabilistic trajectory, in which Gaussian and Bayesian methods were

jointly utilized to predict future vehicle coordinates. The validation of real word trajectory showed that the proposed model

could predict future vehicle trajectories within two seconds. VDM represented a model built using vehicle dynamics data

(e.g., velocity, acceleration, steering angle, and yaw angle) and relevant mathematical methods. Vehicle kinematic data

and a maneuver identification model were combined to trajectory prediction model which was validated by real driving

data . The results indicated that the model was effective in short-term prediction. However, the accuracy of its long-term

prediction was not stable. PM was usually employed to fit non-linear curves. Guo et al.  fitted and predicted the

longitudinal trajectory of a vehicle using a fifth-order polynomial. These approaches only achieved favorable results on

short-term trajectory forecasts. However, it did not show promising results when predicting long trajectories.

Besides the traditional methods motioned above, a large number of works focused on vehicle trajectory prediction by

using recurrent neural network (RNN) and Long short-term memory (LSTM). Especially variant LSTM had received a lot of

attention from researchers. Deo and Trivedi  used the LSTM encoder to encode the trajectory vectors of surrounding

vehicles to predict the future trajectory and validated the effect on the NGSIM dataset. In , two streams graph LSTM to

predict trajectories and driving behavior were adopted under urban scenarios. The first stream used only a conventional

LSTM encoder-decoder network when the second stream used a weighted dynamic geometric graph. The model was

evaluated on the Argoverse, Lyft, Apolloscape, and NGSIM datasets. Although it had achieved promising results in long-

term trajectory prediction, LSTM normally had difficulty modeling complex temporal dependencies .

Recently, Transformer networks had made ground-breaking progress in Natural Language Processing domains (NLP) .

Transformers discarded the sequence of language sequences and only modeled temporal dependencies using a powerful

self-attention mechanism. The key advantage of the transformer architecture was the significant improvement in temporal

modeling compared to RNN. Several studies had used transformer networks to model pedestrian trajectory prediction and

achieved good results . Although the transformer was excellent at predicting pedestrian trajectories, vehicles had

faster speeds compared to pedestrians. Moreover, these studies had not been able to predict target trajectory from the

raw data because the location of the targets was already provided in the public dataset.

3. Sensors Fusion and History Trajectory Generation

3.1. Detection

Detection and tracking are prerequisites for generating PTV’s historical trajectory. Moreover, excellent trackers depend

largely on a superb detector. You only look once (YOLO) algorithms can achieve faster performance than the two-stage

algorithm by tuning the backbone network due to the omission of the coarse localization process. In particular, the

YOLOv5 model is faster, more accurate and has a lower number of model parameters than the YOLOv4 model .

Therefore, YOLOv5 is employed as the detector for PTV.

3.2. Tracking

DeepSORT is an improved version of simple online and real-time tracking (SORT). It integrates a pre-trained neural

network to generate feature vectors which are used as a deep association metric. Specifically, it applies a trained

convolutional neural network (CNN) to detect obstacles on large-scale datasets. By using this network integration,

deepSORT overcomes the shortcomings of SORT while ensuring that the system is easy to implement, effective, and

suitable for real-time situations . Hence, researchers apply deepSORT as the tracker.
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3.3. Lidar-Camera Fusion

Sensor fusion can enhance sensing capabilities and reduce costs by exploiting the complementary properties. LIDAR

provides accurate PTV geometry information; however, the LIDAR has low resolution and a low frame rate. On the

contrary, monocular cameras have high frame rates and resolution but difficulty in perceiving 3D geometric information.

Therefore, camera–LIDAR fusion has been more focused on the perception of autonomous driving .

The process of LIDAR-camera fusion is as follows. First, the 3D point cloud is cropped according to EV’s driving direction.

Next, the YOLOv5 detector fetches the PTV’s bounding box from the image. Then, point clouds are projected and

clustered in the pixel coordinate system according to the joint calibration parameters of the LIDAR and the camera. After

that, the position of PTV relative to EV is extracted based on the clustered point cloud. Finally, temporal features of the

PTV are associated with the deepSORT tracker. Figure 2 displays the effect of LIDAR–camera fusion.

Figure 2. The effect of LIDAR–camera fusion.
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