TCES Systems Based on Hydroxides | Encyclopedia.pub

TCES Systems Based on Hydroxides

Subjects: Energy & Fuels

Contributor: Laurie André , Stéphane Abanades

The exploitation of solar energy, an unlimited and renewable energy resource, is of prime interest to support the
replacement of fossil fuels by renewable energy alternatives. Solar energy can be used via concentrated solar
power (CSP) combined with thermochemical energy storage (TCES) for the conversion and storage of
concentrated solar energy via reversible solid—gas reactions, thus enabling round the clock operation and
continuous production. This entry is about High-temperature thermochemical energy storage using the enthalpy of

reversible reactions.

thermochemical energy storage solid-gas reaction hydroxide concentrated solar power

reversible reactions

| 1. Introduction

The enthalpy of solid-gas chemical reactions stored in chemical materials can be used to generate heat when
necessary via endothermal/exothermal reversible reactions. The stored and released heat can be used for
example to run power cycles or more generally in industrial processes operating at high temperatures and thus
requiring high amounts of energy that are usually provided by fossil fuel combustion. Thus, thermochemical energy
storage (TCES) has potential to lower fossil fuel consumption and related greenhouse gas emissions 2. A high
potential also exists in the combination of TCES systems with renewable energy systems. Thermal energy storage
is indeed particularly suitable for being combined with concentrated solar energy that relies on an intermittent
resource, with the aim to operate the process continuously (day and night as well as stable operation during
fluctuating solar energy input) (Eigure 1). Indeed, solar energy is variable and can fluctuate a lot in nature due to
clouds and weather conditions, thus requiring a storage system for smooth and stable operation under fluctuating
solar irradiation conditions. TCES is thus attractive since continuous operation allows a strong increase in the
capacity factor of the solar plant, while it can further contribute to eliminating transient effects due to start-
up/shutdown periods and unstable/variable solar conditions. The possible envisioned applications are pertaining to
electricity production by concentrated solar power (CSP) plants or more generally high temperature chemical
processes requiring an external energy input as the process heat supply (e.g., cement and concrete production,
minerals calcination, metallurgical processes, fuel production processes or chemical industrial processes). Most
industrial energy-intensive processes require a high temperature heat source generally provided by fossil fuel
burning. In such high temperature processes, the required high temperature heat for running power cycles or
driving endothermal reactions can be generated with solar concentrating systems (parabolic dish, trough, linear

Fresnel systems or solar tower receivers with heliostat field). This is the case of CSP plants for electricity
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generation and solar thermochemical processes for fuels (syngas production via reforming, gasification of
carbonaceous feedstocks, H,O and CO, splitting via thermochemical cycles, etc.) or chemical commodity
production (cement, metals, etc.). Thus, the interest in TCES integration in such processes for continuous
operation is constantly growing. Another possible application is the utilization of TCES for the recovery and storage
of waste heat of various energy and industrial processes at different temperature levels in order to increase
process efficiencies or to produce additional extra heat/electricity.

L
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Figure 1. Scheme of the solar power plant main components integrating buffer thermal energy storage system.

In contrast to other energy storage systems including sensible and/or latent energy storage, thermochemical
storage offers the possibility of high energy densities in the form of chemical bonds as well as long-term storage
and long-range transport in the form of stable and safe materials (Table 1). In addition, the operating conditions can

be tuned in a wide range of temperatures and pressures depending on the used TCES system and involved
chemical reactions, thus offering the possibility of being combined with various processes. In contrast to sensible or
latent heat storage systems that have been developed and optimized, and are even commercially available and
applied at large scale, thermochemical energy storage is a new research area in which many aspects are still
unknown and are still to be discovered 2. Research advances are thus needed for potential industrial
implementation, while also taking into account the energy consumption by auxiliary equipment and feedstock cost
that impact the system capital cost Bl. The main fields in which strong efforts are necessary to develop practical
TCES systems and bridge the gap from fundamental research to application are the discovery of cost effective,
abundant and affordable chemical materials with high energy densities, cycle stability and fast kinetics for heat
storage and release @. Furthermore, additional research and technological developments are needed in the
optimal design of heat storage-chemical reactor systems for maximum heat transfer between the storage medium
and the high temperature solar process, and the complete system integration in large scale plants (optimization of
heat and mass flows, dynamic simulation during transient events and fluctuating solar conditions, techno-

economics, etc.) 451,
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Table 1. Comparison of the main options for thermal energy storage using concentrated solar power (CSP),

adapted with permission from Il Elsevier, 2020.

Storage Type

Gravimetric

energy density

Volumetric

energy density

Storage
temperature

Technology
development

Energy storage

period

Theoretical

Sensible Heat Storage
(SHS)

~0.02-0.03 kWh/kg

~50 kWh/m?3

Charging step temperature

Industrial scale

Limited (Thermal loss)

Very short distance

Latent Heat Storage (LHT)

~0.05-0.1 kWh/kg

~100 kWh/m3

Charging step temperature

Pilot scale

Limited (Thermal loss)

Very short distance

Thermochemical
Energy Storage (TCES)

~0.5-1 kWh/kg

~500 kWh/m3

Room temperature

Laboratory and pilot

scale

Theoretically unlimited

Very long distance

energy transport (>100 km)
Technology ] ]
) Simple Medium Complex
complexity
Important thermal losses Important thermal losses o
) ) ) ) ) Expensive investment
Drawbacks over time Large quantity of over time Corrosive materials )
) ) . cost Complex technique
storage material required Low heat conductivity
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material. Ca(OH), nanomaterials” with spindle and hexagonal structure were synthesized by a deposition-
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th% rﬁ\éﬁes{osr?)ec}ﬁg sﬁpf%(;eogrezee{a|ﬁu8§+1 anglstﬁ%yésngrvg\y,y storage density among the tested nanomaterials. In

addition, the dehydration/hydration kinetics were improved with the spindle-shaped material and it presented the

best cycling stability over ten cycles, as it retained a conversion rate above 70%.

Mg(OH),/MgO is another potential system for TCES which is currently getting attention. Mg(OH), was considered
at reactor scale, and an economical study was conducted 24, However, the material suffers from slow and
incomplete rehydration, as stated by Miiller et al. (2019) [28 The authors recently studied the rehydration
mechanism of MgO and of natural magnesite in order to assess the effect of impurities on the reaction. The
enhancement of the TCES system consisting of MgO/Mg(OH), was studied via the addition of LINO3 with 1, 3, 6
and 10 wt% added 22, The dehydration temperature of the LiNO3-Mg(OH), composites was lower, from 289 down
to 269 °C for 1 wt% and 10 wt% doping, respectively, than that of pure Mg(OH), which was measured at 325 °C.
The dehydration temperature of the LINO3-Mg(OH), composite may then be tuned via the addition of an adequate
amount of LINO3, and the composite materials could sustain more than ten dehydration/rehydration cycles without
losing thermal efficiency. In addition, the calculated dehydration rate constant was higher with LINO3 doping, but

the composite material presented lower released heat from the reaction. The mixture LINOs/Mg(OH), was also
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studied explicitly for TCES at a lower temperature (<300 °C) since the addition of LINO; to Mg(OH), decreases the
dehydration temperature of Mg-based system (76 °C difference) [B931],
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