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Sn-rich solder joints in three-dimensional integrated circuits and their reliability issues, such as electromigration

(EM), thermomigration (TM), and thermomechanical fatigue (TMF), have drawn attention related to their use in

electronic packaging.  The Sn grain orientation is recognized as playing an important role in reliability issues due to

its anisotropic diffusivity, mechanical properties, and coefficient of thermal expansion.

lead-free solder  Sn grain orientation  electromigration

1. Introduction

Lead-free solder has been widely used in electronic packaging since the restriction of the inclusion of lead in

consumer electronics . Lead-free solders are Sn-based alloys with various kinds of element additions,

including Ag, Cu, Ni, Bi, Zn, Ti, In, and graphene . Such alloys possess a wide range of melting

points, electrical and mechanical properties, microstructures, and wetting behaviors for various applications in

electronic devices . Among them, Sn-rich solder, which contains considerable amounts of Sn in the

solder matrixes, is widely adopted in solder joints that are assembled via under-bump metallization (UBM), using a

solder alloy and intermetallic compound (IMC) at the interface between the solder and the UBM method via a

reflow process at a suitable temperature . The reliability issues of Sn-rich solder joints have drawn

substantial concerns, the first of which is the electromigration (EM) reliability during a consistent electron flow with

a critical current density in Sn-rich solder joints , inducing UBM dissolution, rapid IMC growth, void

formation, and severe Joule heating . Then, the Joule heating induces a temperature gradient in the

solder joint, known as the thermomigration (TM) . Additionally, during multiple cycles of increases and

decreases in the internal temperature, i.e., thermal cycling tests, the thermomechanical fatigue (TMF) is another

important reliability issue because of the CTE mismatches between the Sn grains, Si chip and polymer substrate,

Sn-rich solder and Si chip, and Sn-rich solder and polymer substrate . However, the properties of Sn-rich

solders are dominated by β-Sn crystals, and the effects of their properties on the EM, TM, and TMF of Sn-rich

solder joints are worth investigating in detail.

Sn possesses a body-centered tetragonal structure (a-axis: 0.583 Å , c-axis: 0.318 Å  at 25 °C) , inducing

anisotropic diffusion and thermal, mechanical, and electrical properties . The effects of these

anisotropic properties on the EM, TM, and TMF reliability levels of solder joints are critical issues that have been

deeply studied by many researchers. Moreover, due to the miniaturization and high performance of electronic

devices, three-dimensional integrated circuits (3DICs) have become very popular and critical for the next
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generation of electronic packaging . The use of a microbump is particularly important to connect the

through-silicon-via (TSV) and chip in 3DICs. However, with the reduction in solder volume, the Sn-rich solder in the

microbumps may contain few Sn grains or even a single-crystal-like structure. The effects of the Sn grain

orientation on these issues are more significant than in flip–chip solder joints because of the dominant grains in the

microbumps.

2. Effect of Sn Grain Orientation on Electromigration

Electromigration is the phenomenon whereby atomic migration is caused by the momentum transfer between

electrons and diffusing specimens under an electric current . The atomic flux diffusing during

electromigration can be expressed as :

(1)

where C is the atomic concentration, D is the diffusivity, Z* is the effective charge number, K is Boltzmann

constant, T is the absolute temperature, e is the electron charge, E is the electron field, ρ is the resistivity, and j is

the current density. Because interstitial diffusion dominates the electromigration behavior of Sn-rich solder joints,

as the Sn self-diffusion rate is very low , the considerable atoms of UBMs would migrate in Sn solder from the

cathode to the anode. Meanwhile, the anisotropic diffusion of Sn grains induces different failure modes due to the

different atomic fluxes. Table 1 summarizes the diffusivity levels of Cu and Ni along the c-axis and a-axis during

EM in Sn at 120 °C. The diffusivity rate of Cu along the c-axis of Sn is approximately 61 times larger than that

along the a-axis. For Ni, the diffusivity rate along the c-axis is approximately 70,000 times larger than that along the

a-axis, being much greater. Therefore, the effect of the Sn grain orientation on EM failure in Sn solder joints with Ni

UBMs under a current density of 7.7 × 10  A/cm  was first observed by Lu et al. . Since then, substantial studies

on this effect have been reported . In the studies, the extra-fast UBM dissolution of Cu/Ni at the

cathode occurs as the electron flow is closely parallel to the c-axis, which possesses a high diffusion rate.

However, when the electron flow is vertical to the c-axis, i.e., closely parallel to the a-axis of Sn, void formations

can be observed instead of the depletion of UBM. The UBM dissolutions and void formations rapidly increase the

resistivity of the solder joints, which is a critical reliability issue. On the other hand, on the anode side, considerable

IMC growth can be observed when the electron flow is parallel to the c-axis of Sn. In many studies, in addition to

increasing the resistivity, the growth of brittle IMC induced poor mechanical reliability in Sn-rich solder joints 

. Therefore, the mechanism of the effect of the Sn grain orientation on the electromigration is very

important.

Table 1. The diffusivity levels of Cu and Ni calculated at 120 °C.
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In this section, the α-angle is defined as the angle between the c-axis of Sn and the electron flow. The diffusivity of

Sn grains in Cu can be expressed as :

(2)

where the diffusivity levels along the c-axis (D ) and a-axis (D ) can be expressed as :

(3)

(4)

where R is the universal gas constant and T is the absolute temperature. The temperatures directly affect the

diffusivity levels, and a higher temperature induces a higher atomic flux during the diffusion, accelerating the

occurrence of the IMC growth and UBM dissolution. Hence, when the Sn solder has a low α-angle grain, a

considerable amount of atoms from the dissolution of UBMs at the cathode diffuse to the anode. Conversely,

instead of fast interstitial diffusion along a low α-angle grain, the Sn self-diffusion dominates the EM, inducing void

formations and a little UBM dissolution at the cathode. Figure 1a shows a Cu/Sn-rich solder–Cu joint with high and

low α-angle grains of Sn. J  and J  are the Cu fluxes via a low and high α-angle grain, respectively. Owing to J  >>

J , the IMC decomposition caused by the fast interstitial diffusion along the low α-angle grain is rapid at the

cathode, while void formation occurs in the high α-angle grain, as shown in Figure 1b. With the passing of time

(Figure 1c), in the low α-angle grain, serious UBM dissolution at the cathode after the complete decomposition of

as-bonded IMC and the substantial IMC growth at the anode are observed; conversely, in the high α-angle grain,

there is no significant change in IMC thickness due to the very low J  and the greater number of void formations at

the cathode.

Type of Diffusion Diffusivity (cm /s) Condition Ref.

D 5.96 × 10 Along c-axis

 9.7 × 10 Along a-axis

D 8.22 × 10 Along c-axis

 1.10 × 10 Along a-axis

2

Cu in Sn
−6 [36]

−8 [36]

Ni in Sn
−5 [37]

−9 [37][34]

Dgrain = Dc,Cu cos2α + Da,Cu sin2α  cm2 /s

c,Cu a,Cu
[33]
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RT
]  cm2 /s.

Da,Cu = 2.4 × 10−3exp[−
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]  cm2 /s
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Figure 1. A schematic of the different failure modes induced by the grain orientation in solder joints: (a) initial

stage; (b) intermediate duration; (c) terminal stage.

However, the void formations and UBM dissolutions at the cathode of the high α-angle grain might be influenced by

current crowding during electromigration . Line-type solder joints were fabricated to avoid the

complication of current crowding, providing a purer surrounding to observe the effect of the Sn grain orientation on

the electromigration in Sn-rich solder joints . UBM dissolution dominated by the Sn grain orientation was

observed in the line-type solder joint, without the current crowding effect . As current crowding played no role in

the line-type solder joints, there were no obvious void formations at the cathode of the high α-angle grain after EM

at a 10  A cm  current density for 400 h. An EBSD orientation map is shown for the c-axis direction in the line-type

solder joint. Interestingly, the formation of the Sn-Ni IMC at the anode and the dissolution of the Ni substrate at the

cathode occur along with the angles of the c-axis of Sn grains. The detailed mechanism behind this has been

proven in . The components of the electron field (E→), Sn unit cell, and the atomic flux (J→) during EM. There is

an φ-angle between the E→ and J→ and an α-angle between the c-axis and E→. The φ-angle can be calculated

by :

(5)

where D  and D  are the diffusivity levels, respectively, along a-axis and c-axis in different materials. If the α-angles

are 28.61° and 58.57°, the φ-angles will be 28.28° and 57.66°, respectively. The angles are nearly identical to each

other. Additionally, the atomic flux J→ can be expressed as :

(6)

The atomic flux along the electron field (J ) can be expressed as:

(7)

As mentioned above, when the α-angle is very low, the atomic flux deviation from the c-axis will become largely

considerable. Consequently, the atoms of the UBM mainly migrate along the c-axis from the cathode to the anode

through the interstitial diffusion because the contribution of Dasin2α is low and D  ≫ D . In a high α-angle grain,

the J  is very low because (Dasin2α+Dccos2α) is very small, and even ≅Dasin2α could be neglected in the

comparison with a low α-angle grain. Meanwhile, the atomic flux deviation from the c-axis is very limited, and the
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UBM dissolution and IMC formation seldom occur along the c-axis. Similar results in the solder joints with Cu

UBMs were also observed in . Moreover, in the Sn-Pb solder microbump, when the electromigration test

was carried out at −196 °C, the anisotropic migration of the Pb did not occur. Instead, their study found that the Pb

migrated in a parallel path. On the contrary, the Pb rapidly migrated along a specific direction (the c-axis of the Sn)

during the electromigration at room temperature . The different migration routes of the Pb were due to the

different crystal structures of the Sn at the two temperatures. At <13 °C, the Sn type was α-Sn with a face-centered

cubic structure , so the electric properties of α-Sn were isotropic. At room temperature, the Sn type was β-Sn

with a body-centered tetragonal structure, which was anisotropic . The results exhibit the significant effect of the

β-Sn grain orientation on the electromigration in solder microbumps. Therefore, the electromigration along the Sn

c-axis is clearly explained.

Although the effect of the Sn c-axis on the electromigration is known. This phenomenon would be more significant

with the increase in the misorientation angles of the grain boundaries. However, due to the considerable number of

Sn cyclic-twin boundaries, which are a type of coherent boundary in β-Sn crystals , in Sn-Ag  the atoms rarely

diffuse along the cycling twining boundary (CTB) compared to the boundaries with high misorientation angles. In

other words, the effects of grain boundaries on electromigration would be dependent on the type of grain boundary.

If there is no CTB in a Sn-rich solder, the UBM dissolutions and IMC formations are influenced by the grain

boundary misorientation angles rather than the Sn grain orientations . This is why the EM damages were

retarded by the CTB .
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