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Technology facilitates humans, improves productivity and leads to a better quality of life. Technological

developments and automation in vehicular networks will lead to better road safety and lower congestion in present

urban areas where the traditional transport system is becoming increasingly disorganised and inefficient.

Therefore, the development of the intelligent transport systems (ITS) concept has been proposed, with the aim and

focus on improving traffic safety and providing different services to its users. There has been considerable research

in ITS resulting in significant contributions . 

: autonomous vehicles  Bluetooth  dedicated short-range communications

1. System Architecture for Autonomous Vehicles

An ordinary vehicle can be converted into an autonomous one by adding some additional components including

sensors that allow the vehicle to make its own decisions by sensing the environment and controlling the mobility of

the vehicle .  Figure 1  illustrates the overall communication process/protocol in AVs and also lists the

sensors, actuators, hardware and the software control required. The protocol architecture, explained below, is

composed of four main stages and enables a Level 5 fully autonomous vehicle where all the users are passengers.

Figure 1. System Architecture for AVs.

Perception: This stage involves sensing of the AVs surrounding through various sensors and also detecting its

own position with respect to the surroundings. In this stage, some of the sensors used by the AV are RADAR,

LIDAR, camera, real-time kinetic (RTK), etc. The information from these sensors is then passed to the
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recognition modules which process this information. Generally, the AV consists of adaptive detection and

recognition framework (ADAF), a control system, LDWS, TSR, unknown obstacles recognition (UOR), vehicle

positioning and localisation (VPL) module, etc. This processed information is fused and passed to the decision

and planning stage.

Decision and Planning: Utilising the data gathered in the perception process, this stage decides, plans and

controls the motion and behaviour of the AV. This stage is analogous to the brain and makes decision such as

path planning, action prediction, obstacle avoidance, etc. The decision is made based on the current as well as

past information available including real-time map information, traffic details and patterns, information by the

user, etc. There may be a data log module that records errors and information for future reference.

Control: The control module receives information from the decision and planning module and performs

functions/actions related to physical control of the AV such as steering, braking, accelerating etc.

Chassis: The final stage includes the interface with the mechanical components mounted on the chassis such

as the accelerator pedal motor, brake pedal motor, steering wheel motor and gear motor. All these components

are signalled to and controlled by the control module.

After discussing the overall communication and sensor architecture of an AV, we discuss the design, functionality

and utilisation of some main sensors.

1.1. Ultrasonic Sensors

These sensors use ultrasonic waves and operate in the range of 20–40 kHz . These waves are generated by a

magneto-resistive membrane used to measure the distance to the object. The distance is measured by calculating

the time-of-flight (ToF) of the emitted wave to the echoed signal. Ultrasonic sensors have very limited range which

is generally less than 3 m . The sensor output is updated after every 20 ms , making it not compliant with the

strict QoS constraints of an ITS. These sensors are directional and provide a very narrow beam detection range .

Therefore, multiple sensors are needed to to get a full-field view. However, multiple sensors will influence each

other and can cause extreme ranging errors . The general solution is to provide a unique signature or

identification code which will be required to discard the echoes of other ultrasonic sensors operating in near-by

range . In AVs, these sensors are utilised to measure short distances at low speeds. For example, they are used

for SPA and LDWS . Moreover, these sensors work satisfactorily with any material (independent of color), in bad

weather conditions and even in dusty environments.

1.2. RADAR: Radio Detection and Ranging

RADARs, in AVs, are used to scan the surroundings to detect the presence and location of cars and objects.

RADARs operate in the millimetre-wave (mm-Wave) spectrum and are typically used in military and civil

applications such as airports or meteorological systems . In modern vehicles, different frequency bands such as

24, 60, 77 and 79 GHz are employed and they can measure a range from 5 to 200 m . The distance between

the AV and the object is calculated by measuring the ToF between the emitted signal and the received echo. In
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AVs, the RADARs use an array of micro-antennas that generate a set of lobes to improve the range resolution as

well as the detection of multiple targets . As mm-Wave RADAR has higher penetrability and a wider bandwidth,

and it can accurately measure the short-range targets in any direction utilising the variation in Doppler shift 

. Due to longer wavelength, mm-Wave radars have an anti-blocking and anti-pollution capability that allows them

to cope in rain, snow, fog and low-light. Furthermore, mm-Wave radars have the ability to measure the relative

velocity using the Doppler shift . This ability of mm-Wave radars make them suitable for extensive AV application

such as obstacle detection , pedestrian recognition  and vehicle recognition . Some applications of

RADARs in AVs are forward cross traffic alert (FCTA), lane change assistance (LCA), blind spot detection (BSD),

rear cross traffic alert (RCTA), etc. The mm-Wave also has some disadvantages such as reduced field-of-view

(FoV), less precision and results in getting more false alarm as a result of emitted signals which gets bounced from

the surroundings .

1.3. LiDAR: Light Detection and Ranging

LiDAR utilises the 905 and 1550 nm spectra . The 905 nm spectrum may cause retinal damage to the human

eye, and, therefore, the modern LiDAR is operated in the 1550 nm spectrum to minimise the retinal damage .

The maximum working distance of LiDAR is up to 200 m . LiDAR can be categorised into 2D, 3D and solid-state

LiDAR . A 2D LiDAR uses the single laser beam diffused over the mirror that rotates at high speed. A 3D LiDAR

can obtain the 3D image of the surrounding by locating multiple lasers on the pod . At present, the 3D LiDAR

can produce reliable results with an accuracy of few centimetres by integrating 4–128 lasers with a horizontal

movement of 360 degrees and the vertical movement of 20–45 degrees . The solid-state LiDAR uses the micro-

electromechanical system (MEMS) circuit with micro-mirrors to synchronise the laser beam to scan the horizontal

FoV several times. The laser light is diffused with the help of a micro-mirror to create the vertical projection of the

object. The received signal is captured by a photo-detector and the process repeats until the complete image of the

object is created. LiDAR is used for positioning, obstacle detection and environmental reconstruction . 3D LiDAR

sensors are playing an increasingly significant role in the AV system . As a result, the LiDARs can be used for

ACC, 2D or 3D maps and object identification and avoidance. A roadside LiDAR system has shown to reduce the

vehicle-to-pedestrian (V2P) crashes both at intersections and non-intersection areas . In , a 16-line real-time

computationally efficient LiDAR system is employed. Deep auto-encoder artificial neural network (DA-ANN) is

proposed, which achieves an accuracy of   within a range of 30 m. In , a 64-line 3D LiDAR utilising a support

vector machine (SVM)-based algorithm is shown to improve the detection of the pedestrian. Although LiDAR is

superior to a mm-Wave radar in measurement accuracy and 3D perception, its performance suffers under severe

weather conditions such as fog, snow and rain . In addition, its operating range detection capability depends on

the reflectiveness of the object .

1.4. Cameras

The camera in AVs can be classified as either visible-light based or infrared-based depending upon the wavelength

of the device. The camera uses image sensors built with two technologies that are charge-coupled device (CCD)

and a complementary metal-oxide-semiconductor (CMOS) . The maximum range of the camera is around 250 m
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depending on the quality of the lens . The visible cameras use the same wavelength as the human eye i.e.,

400–780 nm, and is divided into three bands: Red, Green and Blue (RGB). To obtain the stereoscopic vision, two

VIS cameras are combined with known focal length to generate the new channel with the depth (D) information.

Such a feature allows the camera (RGBD) to obtain a 3D image of the scene around the vehicle .

The infrared (IR) camera uses passive sensors with a wavelength between 780 nm and 1 mm. The IR sensors in

AVs provide vision control in peak illumination. This camera assists AVs in BSD, side view control, accident

recording and object identification . Nevertheless, the performance of the camera changes in bad weather

conditions such as snow, fog and moment-of-light variation .

The main advantages of a camera are that it can gather and record the texture, color distribution and contour of the

surroundings accurately . However, the angle of observation is limited due to narrow view of the camera lens

. Therefore, multiple cameras have been adopted in AVs to monitor the surrounding environment . A three-

stage RGBD architecture using deep learning and convolutional neural networks was proposed by Ferraz et al. for

vehicle and pedestrian detection . However, this requires the AV to process huge amount of data . Currently,

AVs do not possess such computational resources; therefore, computational offloading may be an appropriate

solution .

Table 4 summarises the challenges of the discussed sensor technologies. It can be observed in Table 4 that the

detection capability and reliability of the various sensors is limited in different environments. This limitation can be

overcome and the accuracy of target detection along with the reliability can be improved through multi-sensor

fusion. Radar–camera (RC) , Camera–LiDAR (CL) , Radar–LiDAR (RL)  and Radar–Camera–LiDAR

(RCL)  have been proposed where different sensors are combined together to improve the perception of the

environment. Furthermore, in , three different sensor plans are developed based on range, cost and balance

function. In this study, several different sensors are combined. In Plan A, four cameras, a mm-Wave RADAR, 32-

and 4-layer LiDAR and a GPS+IMU are employed. In Plan B, four cameras, three mm-Wave RADAR, a four-layer

LiDAR and a GPS+IMU are utilised. Finally, in Plan  C, two regular cameras, three mm-Wave RADARs, a

surrounding camera and a twelve-unit ultrasonic sensor are utilised.

Table 4. Comparison of sensor and their challenges.

Sensor Challenges

Ultrasonic Sensors

Cannot be used at high speed

Maximum range is 2 m 

Very low resolution as compared to RADAR

RADAR Generate a large number of false alarms due to surroundings metal objects
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Sensor Challenges
The range is between 5 m and 200 m

Generated images are of low resolution as compared to Cameras and LiDARs

LiDAR

Suffers extremely from the weather

Maximum range is 200 m 

Very expensive due to high price.

Cameras

Computation overheads which increases the time-critical applications 

The maximum range is 250 m depending upon the lens 

A big range resolution gap exists between the Cameras and RADARs or LiDARs.

1.5. GNSS and GPS, IMU: Global Navigation Satellite System and Global
Positioning System, Inertial Measurement Unit

This technology can determine the exact position of the AV and helps it navigate . GNSS utilises a set of

satellites orbiting around the earth’s surface to localise . The system contains the information of AV’s position,

speed and the exact time . It operates by calculating the ToF between the satellite emitted signal and the

receiver . The AV position is usually extracted from the Global Positioning System (GPS) coordinates. The

extracted coordinates by GPS are not always accurate and they usually introduce an error in the position with a

mean value of 3 m and a standard deviation of 1 m . The performance is further degraded in urban

environments and an error in position can increase up to 20 m  and in some extreme cases the GPS position

error is around 100 m . In addition to this, the RTK system can also be used in AVs to precisely calculate the

position of the vehicle . Furthermore, dead reckoning (DR) and the inertial position can also be used in AVs to

determine the position and the direction of the vehicle . A technique known as odometry can be used to measure

the position of the vehicle by fixing the rotary sensors to the wheels of the vehicle . To make the AV capable of

detecting slippage or lateral movements, the inertial measurement unit (IMU) is used and it detects this using

accelerometers, gyroscopes and the magnetometer sensor’s data. The IMU combined with all units can rectify the

errors and increases the sampling speed of the measuring system. Although the IMU cannot provide the position

error unless it is not accompanied by the GNSS system, AVs can get information from different sources such as

RADAR, LiDAR, IMU, GNSS, UWB and camera to minimise the possibilities of error and perform reliable position

measurement . GPS can be combined with IMU techniques such as DR and the inertial position to confirm and

improve the position estimate of the AV .
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1.6. Sensor Fusion

Real-time and accurate knowledge of vehicle position, state and other vehicle parameters such as weight, stability,

velocity, etc. are important for vehicle handling and safety and, thus, need to be acquired by the AVs using various

sensors . The process of sensor fusion is used to obtain coherent information by combining the data obtained

from different sensors . The process allows the synthesis action of raw data obtained from complimentary

sources . Therefore, sensor fusion allows the AV to precisely understand its surrounding by combining all the

beneficial information obtained from different sensors . The fusion process in AVs is carried out by using different

types of algorithms such as Kalman filters and Bayesian filters. The Kalman filter is considered very important for a

vehicle to drive independently because it is utilised in different applications such as RADAR tracking, satellite

navigation system and visual odometry .

2. Vehicular Ad-Hoc Networks (VANETs)

VANETs are an emerging sub-class of mobile ad-hoc networks capable of spontaneous creation of a network of

mobile devices/vehicles . VANETs can be used for vehicle-to-vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

communication . The main purpose of such technology is to generate security on the roads; for example,

during hazardous conditions such as accidents and traffic jam the vehicles can communicate with each other and

the network to share vital information . The main components of VANET technology are:

On-board unit (OBU): It is a GPS-based tracking device embedded in every vehicle to communicate with each

other and with roadside unit (RSU) . To retrieve the vital information, the OBU is equipped with many

electronic components such as resource command processor (RCP), sensor devices and user interfaces. Its

main goal is to communicate between different RSUs and OBUs via a wireless link .

Roadside Unit (RSU): RSU is a computing unit fixed at specific location on roads, parking areas and

intersections . Its main goal is to provide connectivity between autonomous vehicle and the infrastructure and

also assists in vehicle localisation . It can also be used to connect vehicle with other RSUs using different

network topologies . They have also been powered using ambient energy sources such as solar power .

Trusted Authority (TA): It is an authority which manages the entire process for VANETs, so that only valid RSUs

and vehicle OBUs can register and communicate . It provides security by verifying the OBU ID and

authenticates the vehicle. It also detects malicious messages or suspicious behaviour .

VANETs have some unique properties which are very different from other ad-hoc technologies.

VANETs have very low discovery latency and as a result the vehicles, even at high speeds, connect to the RSU

quickly and rarely face network outage .
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The OBUs can move with predictable and regular path. It can help to detect the actual trajectory of the vehicle

at any point of time . The RSUs in VANETs can localise the vehicle and also log the path of the vehicle and

also predict its trajectory to avoid any hazard.

The vehicle sensors and other nodes do not face any energy restrictions because they can extract energy from

the vehicle engine.

The use of multicast broadcasting in VANETs allows the different vehicles to communicate with each other

simultaneously .

Vehicular communication, utilising VANETs, includes V2V communication, V2I communication and V2X

communication, as illustrated in Figure 2. The details are given below.

Figure 2. Vehicular communication (VC) system.

2.1. Vehicle-To-Vehicle (V2V) Communication

It is also called inter-vehicle communication (IVC) that allows the vehicles to communicate with each other and

share the necessary information about traffic congestion, accidents and speed limits . V2V communication can

generate the network by connecting different nodes (Vehicles) using a mesh (partial or full) topology .

Depending upon the number of hops used for inter-vehicle communication, they are classified as single-hop (SIVC)

or Multi-hop (MIVC) systems . The SIVC can be used for short-range applications such as lane merging, ACC,

etc., whereas MIVC can be used for long-range communication such as traffic monitoring. The V2V communication

provides several advantages such as BSD, FCWS, automatic emergency braking (AEB) and LDWS .

2.2. Vehicle-To-Infrastructure (V2I) Communication

It is also known as roadside-to-vehicle communication (RVC) and allows the vehicles to interact with the RSUs. It

helps to detect traffic lights, cameras, lane markers and parking meters . The communication of vehicles with the

infrastructure is ad-hoc, wireless and bidirectional . The data collected from the infrastructure are used for traffic

supervision and management. They are used to set different speed variables allowing the vehicles to maximise fuel

efficiency as well as control the traffic flow . Depending on the infrastructure, the RVC system can be divided

into the Sparse RVC (SRVC) and the Ubiquitous RVC (URVC) . The SRVC system provides communication
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services at hotspots only, for example to detect available parking spaces or gas stations, whereas the URVC

system provides coverage throughout the road, even at high speeds. Therefore, the URVC system requires a large

investment to ensure network coverage .

2.3. Vehicle-To-Everything (V2X) Communication

The V2X communication allows the vehicle to communicate with other entities such as pedestrians (V2P), roadside

(V2R), devices (V2D) and the Grid (V2G) . This communication is used to prevent road accidents with

vulnerable pedestrians, cyclists and motorcyclists . The V2X communication allows the Pedestrian Collision

Warning (PCW) mechanism to alert the roadside passenger before any serious accident takes place. The PCW

can access the Bluetooth or Near Field Communication (NFC) of the smartphone and may use beacon stuffing to

deliver critical messages to the pedestrian .
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