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Hybrid hydrogels definition is still debatable. They are defined either as a complex composed  chemically or

physically cross-linking structures, or it refers to systems combining different polymers and/or with nanoparticles,

such as plasmonic, magnetic, and carbonaceous nanoparticles, among others, or they are constituted by

chemically, functionally, and morphologically distinct features from at least two different classes of molecules, which

can include biologically active polymers as polysaccharides and/or proteins, peptides, or nano/microstructures,

interconnected via physical or chemical means.
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1. Introduction

Hydrogels can be classified by taking into consideration many factors, such as source; preparation methods;

network structure (as permanent (chemically crosslinked or irreversible), and non-permanent (physically

crosslinked or reversible, hydrogen-bonded hydrogels); dimensions (macrogels, microgels, nanogels); sensitivity to

stimuli (such as physical, chemical, and biochemical stimuli); charge of polymer network (nonionic, ionic, zwitterion,

and amphoteric); physical aspect (micro-/nanoparticle, film, matrix, gel, etc.); configuration (amorphous and

semicrystalline); composition (homopolymeric, multipolymeric or heteropolymeric, copolymeric, and

interpenetrating polymer networks, hybrids, composites); degradability (biodegradable, bioabsorbable, bioerodible,

and degradable in a controlled manner) (Scheme 1) .[1][2]



Medical Applications of Hybrid Hydrogels Containing Natural Polymers | Encyclopedia.pub

https://encyclopedia.pub/entry/16200 2/22

Scheme 1. Classification of hydrogels .

Generally, hydrogels contain polar/charged functional groups which offer them hydrophilicity, water absorption

capacity and, respectively, swelling in a certain medium, enhancement of their susceptibility to stimuli, etc. .

They can also differentiate in respect with their equilibrium swelling grade (SWD) as those low SWD hydrogels

(20–50%), medium SWD hydrogels (50–90%), high SWD hydrogels (90–99.5%), and superabsorbent hydrogels

(>99.5%) . The hydrogels with high SWD show good permeability and biocompatibility  being preferred for

use in the medical field.

Hybrid hydrogels definition is still debatable. They are defined either as a complex composed of hundreds of

chemically or physically cross-linking nanogels , or it refers to systems combined with different polymers and/or

with nanoparticles, such as plasmonic, magnetic, and carbonaceous nanoparticles, among others, or they are

constituted by chemically, functionally, and morphologically distinct building blocks from at least two distinct classes

of molecules, which can include biologically active polymers as polysaccharides and/or proteins, peptides, or

nano/microstructures, interconnected via physical or chemical means . Depending on the size and the nature of

the building blocks, the hybridization can occur at molecular level or at microscopic scale (Figure 1).
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Figure 1. Schematic representation of organic hybrid hydrogels systems (adapted from ).

Each medical application involves the unique choice of a combination of the component materials, with the goal to

match both desired structural and functional properties which must effectively produce an advanced polymeric

system, with a new profile . One of the most relevant examples is the combination protein/other polymers. Such

combinations can be resulted by polymerization or conjugation (click chemistry) with synthetic polymers resulting

compatible hybrid hydrogels both in vitro and in vivo as it was demonstrated by cell differentiation, proliferation,

migration studies and drug delivery, tissue engineering, wound healing applications , respectively or

sequestration of growth factors from the surrounding medium . Commonly, the hybrid hydrogels are

heterogeneous and this property is important to assure cell adhesion, organization, and cell–cell interactions

required for medical applications .

1.1. Polymers Used in Hybrid Hydrogels

There are four main types of natural biodegradable polymers used in hybrid hydrogels described in this review—

Table 1, including : (1) homopolysaccharides, as: cellulose and derivatives, pullulan, dextran, starch, etc.; (2)

heteropolysaccharides from which can be mentioned: chitosan/chitin and their derivatives , dextran, agarose,

alginic acid and alginates, hyaluronic acid (HA), chondroitin and derivative sulphates, heparin, pectin, etc. (3)

polypeptides/proteins, such as gelatin, collagen, albumin, fibrin and fibrinogen, soy and whey proteins, silk,

Matrigel™, etc., and genetically engineered proteins  (calmodulin (a calcium-binding protein), elastin-like

polypeptides, leucine zipper) ; (4) deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) . The

protein/polysaccharide hybrid polymers like fibrin/cellulose, collagen/HA, gelatin/alginate and many others etc.

were studied  and other many combination make now topics of undergoing researches. Lignin was also used 

. Most of them are components of the extracellular matrix (ECM) in vivo. Their composition (bovine fibrinogen,

rat tail collagen, etc.) may vary with source and processing method, being difficult to control their microstructures,

properties and reproducibility between experiments.

Table 1. Natural polymers used in organic hybrid hydrogels for medical applications.
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Polysaccharides

Polypeptides and Proteins
Polynucleotides

and Others
Homopolysaccharides Heteropolysaccharides

Cellulose and derivatives

(carboxymethylcellulose,

hydroxyethyl cellulose;

hydroxypropylcellulose

methylcellulose

hydroxypropylmethylcellulose;

cellulose acetophphalate)

Pullulan and derivatives

Gelan

Curdlan

Scleroglucan

schizofillan

Starch and derivatives

Dextran

Dextrins and cyclodextrins

Carrageenan (K-, L-λ, etc) and

derivatives (sulphates)

Glycogen

Inulin

Guar gum

Gum Acacia

Pectin

Chitosan and

derivatives

Chitin

Alginic acid and

derivatives

Hyaluronic acid

Chondroitin and

derivative sulphates

Xanthan gum

Heparin

Keratan sulphate

Dermatan sulphate

Pectin

Glycosaminoglycans

(mucopolysaccharides)

Glucan and beta-glucan

Glucomanan

Laminarin

Proteoglycans

Agar

Gum Arabic

Gelatin

Collagen

Albumins (bovine

serum albumin,

ovalbumin)

β-lactoglobulin

Elastin

Fibrin

Fibronectin

Resilin

Fibrinogen

Immunoglobulins

Soy Protein

Whey protein

Silk (silk fibroin and

sericin)

Lactoferrin

Keratin

Zein

Casein

DNA

RNA

 

 

 

Lignin
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Synthetic polymers commonly used in the hybrid hydrogels preparation can be classified into three main types:

non-biodegradable , biodegradable , and bioactive polymers . Most common synthetic polymers are:

poly (lactic acid) (PLA), poly (ε-caprolactone) (PCL), poly(glycolic acid) (PGA) and copolymers , poly (ethylene

glycol) (PEG) and poly(vinyl alcohol) (PVA)  to produce biodegradable hydrogels. Hydrogels may

include vinyl monomers like 2-hydroxyethyl methacrylate (HEMA), N-isopropyl acrylamide (NIPAAm), 2-

hydroxypropyl methacrylate (HPMA), acrylamide (AAm), acrylic acid (AAc) or macromers , methoxyl

poly(ethylene glycol) (PEG), monoacrylates (mPEGMA or PEGMA), and diacrylates (PEGDA), ethylene glycol

diacrylate (EGDA), Pluronic  polymers, etc. .

By combining the properties of synthetic and natural polymers to form hybrid hydrogels, a direct approach is

created for bioactive hydrogel scaffolds for tissue engineering.

Comparatively with natural polymers, the synthetic polymers are easily synthesized even at large scale by

polymerization, cross-linking, and functionalization (modification by block structures, by blending,

copolymerization), their molecular structure, molecular weight, physical and chemical properties (mechanical

strength, biodegradability ) are more reproducible, this aspect being critical for the medical applications

Polysaccharides

Polypeptides and Proteins
Polynucleotides

and Others
Homopolysaccharides Heteropolysaccharides

Gum tragacanth

Arabinixilans

Konjac glucomanan

Locust bean gum

Synthetic proteins

(Calmodulin,

elastin-like

polypeptides,

leucine zipper)

Prolamins (gluten,

gliadin)

Protamins and

derivatives

Polylysines

Lysozyme

Histones

Enzymes

Myoglobin

Hemoglobin

Cytochrome C

Proteic hormons

Interferon
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mainly scaffolding. Unfortunately, applications of synthetic hydrogels as biomaterials are limited by their absence of

bioactivity. The protein-polymer hybrid networks with complex abilities, including bioactivity, stimuli-responsiveness,

catalytic activity, or ability to regulate cell behaviors have been/are created to overcome this limitation, maintaining

good mechanical properties of materials .

1.1.1. Microgel

The term microgel describes a variety of particles that differ substantially in structure, physico-chemical properties,

preparation and application and is interchangeably with terms such as nanogel, microsphere and macrogel

depending on the numerous particle types falling within the broad sphere of nano-/microparticle shapes and sizes

.

1.1.2. Hybrid Nanogels

Hybrid nanogels later developed are highly crosslinked nano-sized hydrogel systems  with diameter less than

100 nm  having a non-fluid colloidal/polymer network that combine the properties of both hydrogels and

nanomaterials. The nanoscale provides a large surface area for bioconjugation, long time of circulation in blood,

and the possibility of being actively or passively targeted to the desired site of action (e.g., tumor sites) . Hybrid

smart hydrogels/nanogels show the ability to respond to biomedically relevant changes like pH, temperature, ionic

force/concentration, redox environment, light, glucose, magnetic field, electrical field, chemicals or specific

biomarkers etc., by changing their volume, refractive index, and hydrophilicity/hydrophobicity etc. Micro- and nano-

sized hydrogels are faster in responding to changes in their environment than their macroscopic or bulk

counterparts and can be used more efficiently in medical and sensor applications .

1.1.3. Multifunctional Hybrid Nanogels

Multifunctional hybrid nanogels found applications in medical field/nanomedicine for continuous monitoring by

optical sensing to mentioned stimuli in complex samples such as blood and bioreactor fluids as well as for

intracellular imaging, contributing to the explanation of intricate biological processes, the development of novel

diagnoses and therapy toward clinical applications. .

1.1.4. Hybrid Polymer Nanogel/Hydrogels

Hybrid polymer nanogel/hydrogels include interpenetrated networks (IPNs) and core-shell particles. The core-shell

strategy is especially useful for targeting therapy, while the interpenetration allows the development of

multiresponssive nanogels and the control of the drug release profile .

1.1.5. Physical Hydrogels

Physical hydrogels result by ionic and physical interactions, such as hydrogen bonds, coordination bonds,

electrostatic and hydrophobic interactions in certain conditions and physico-chemical interactions (stereo-

complexation, charge condensation, or supramolecular chemistry) . By changing the temperature, pH, ionic

[42][43][44][45][46]
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strength or solvent composition, they form a homogeneous solution and re-gel when they return to their initial

conditions, being reversible gels, generally unstable and mechanically weak . The physical cross-links are also

formed by crystallization,  between amphiphilic block and graft copolymers , and protein interactions .

Physically crosslinked hydrogels show stimuli-responsiveness and self-healing properties, but their mechanical

strength is low and they often exhibit plastic flow .

1.1.6. Chemically or Covalently Crosslinked Hydrogels

Chemically or covalently crosslinked hydrogels with a permanently fixed shape at rest, exhibit a low fracture

toughness and extensibility. Therefore, it is preferred to create both physically and covalently crosslinking

hydrogels , resulting doubly-crosslinked hybrid gels that combine all mentioned properties . Many double

network (DN) hydrogels prepared by double chemically crosslinking or by hybrid physical/chemical crosslinking

imply crosslinking agents, but they present toxicity which is an important disadvantage. Designing a new

generation of DN gels comprising two non-covalent associated networks is a promising technique.

Kondo and coworkers  prepared a dually-crosslinked polymer gel with a very homogeneous network

architecture, using a tetra-arm star-shaped poly(ethylene glycol) (PEG), PEG and poly(dimethylsiloxane) (PDMS)

building blocks linked by orthogonal cross-coupling, The obtained network from hydrophilic and hydrophobic

components regularly and uniformly distributed is non-covalent hydrophobic association whose strength is tuned by

the molar ratio of the hydrophilic PEG and the hydrophobic PDMS segments .

1.1.7. Self-Assembling Hybrid Hydrogels

Self-assembling hybrid hydrogels containing peptides provide the desired biological functionality and

biodegradability, are able to mimic biological structures and materials having direct biomedical applications, namely

as carriers for drug and cell delivery (e.g., incorporation of bioactive sequences from natural proteins). To control

mechanical, biocompatibility and degradation properties, the peptides are combined with polymeric networks 

by chemical modification, covalently linking or non-covalent interactions between peptides and polymers .

Hybrid hydrogels self-assembled from graft copolymers via formation of coiled coil antiparallel heterodimers was

also demonstrated , based on HPMA copolymers backbone and a pair of oppositely charged peptide grafts. The

formation of these hybrid hydrogels was reversible . A DNA/poly(lactic-co-glycolic acid) (PLGA) hybrid hydrogel

(HDNA) was prepared for water-insoluble ophthalmic therapeutic delivery of dexamethasone and it may be applied

in treatment of various eye diseases .

1.1.8. Interpenetrated and Semi-Interpenetrated Polymer Networks

To enhance the mechanical strength, the swelling/deswelling response, and to add new sensitivities to a nanogel,

multicomponent networks as full IPNs and semi-IPNs (sIPNs) were prepared by simultaneous synthesis and

sequential synthesis involving two or more polymers . The reaction can take place in the presence of a

crosslinking agent, in order to form a complete IPN or in the absence of the crosslinking initiator, to form a sIPN.

[55]

[56] [57] [58]

[59]

[60][61] [62]

[63]

[64]

[65][66]

[67]

[68]

[68]

[69]

[70][71]



Medical Applications of Hybrid Hydrogels Containing Natural Polymers | Encyclopedia.pub

https://encyclopedia.pub/entry/16200 8/22

(1) PEG-modified natural polymers , like fibrinogen, heparin (Hep), dextran, HA, and albumin;

(2) PNIPAAm-modified natural polymers, like collagen, chitosan, and alginate .

1.1.9. Core-Shell Polymer Networks

The most common techniques of synthesis of core-shell nanogels are the seed precipitation polymerization,

crosslinking of amphiphilic micelles preformed by self-assembly or the reversible addition–fragmentation chain-

transfer polymerization (RAFT) .

Several examples of hybrid polymeric hydrogel include:

1.1.10.
Supramolecular

Hydrogel

Supramolecular hydrogel are builded by blocks of peptides and polymers by the coupling/conjugation of specific

peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains. In such a way is obtained

controlled cell responses (adhesion, migration, differentiation) because the components can self-assembly into

hybrid hydrogels either, as peptide-polymer conjugates or combining individual components. These will determine

the properties of the hydrogels (as stiffness, mesh structure, responsiveness, and biocompatibility) , cooperative

folding/unfolding transitions control over the structure formation at the nanometer level. The new produced

materials may possess unprecedented levels of structural organization and novel properties . By optimizing the

amino acid sequence, responsive hybrid hydrogels tailor-made for a specific application may be designed. Hybrid

peptide/polymer molecular hydrogel design and synthesis showed significant research progress to mimic the

natural proteins molecular architectures, dynamic responsiveness, and cellular functions, combined with tunability

and processability provided by the synthetic polymer constituents.

2. Preparation Procedures for Polymeric Hybrid Hydrogels

2.1. Routes to Obtain Hybrid Hydrogels

Crosslinking techniques can be: (i) physical crosslinking (achieved by using repeated freezing/thawing cycles and

led to cryogels) by ionic interaction, complex coacervation or H-bonding; (ii) chemical crosslinking or grafting by

polymerization, co-polymerization, chemical conversion (using crosslinking agents such as borates, glyoxal,

glutaraldehyde, etc.), and (iii) irradiation crosslinking or grafting (electron beam or gamma radiation, depending on

irradiation dose). The properties of hydrogels can be controlled by different parameters, such as structures, by

cross-linking type, end density, and synthesis of polymers, while in the case of physical hydrogels, by environment

conditions (as pH, temperature, ionic strength etc.).

Chemically cross-linked gels are obtained by radical polymerization/crosslinking, emulsion, reverse microemulsion,

inverse miniemulsion, heating, irradiation (ultraviolet, high-energy radiation, especially gamma and electron

beams), photolithographic chemical reactions via crosslinker as di-sulfide crosslinking, ionic, click chemistry (such

as azide-alkyne cyclo-addition reactions, thiol-ene couplings, Diels-Alder reactions and tetrazine-norbornene

chemistry), Schiff base crosslinking with a huge ensemble of reactions, such as Michael type reaction, Michaelis-

[72][73][74][75][76][77]
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Arbuzov reaction, and nucleophile addition , and enzymatic cross-linking . Both chemical and physical cross-

linking approaches are employed for hydrogels preparation .

A breakthrough toward the synthesis of complex structures with a high degree of functionality and compositional

variety is the utilization as synthesis ways the controlled/living radical polymerization technique such as the

catalytic atom (group) transfer radical polymerization (ATRP), degenerative chain transfer polymerization

represented by iodine-mediated polymerization (RITP), and reversible addition-fragmentation chain transfer

polymerization (RAFT) . A new strategy of hybrid hydrogels synthesis entails the non-covalent attachment of

genetically engineered coiled-coil protein motifs to hydrophilic synthetic HPMA copolymer backbone. The physical

crosslinking was established by self-assembly of the coiled-coil domains .

2.1.1. Chemical Modifications

Chemical modifications involve a plenty of ligands which can be used for targeted drug delivery, stimulus

responsive drug release or preparation of complex materials. The cross-linking of the hybrid network and

conjugating proteins to the gel backbone as a platform for immobilizing functional proteins was reported by Lim et

al. .

2.1.2. Functionalization

Hybrid hydrogels/nanogels can also be surface functionalized with specific ligands to achieve targeted therapy and

reduce toxicity . Functionalization is also important in order to create different types of macro/micro/nanogels

morphologies, as hairy microgels, core-and-shell, hallow, multilayer microgels,  etc.

2.1.3. Stealth Functionalization

Hybrid nanosystems/nanogels for drug delivery and biomedical purposes need a non-secondary requirement, as

their biocompatibility necessary both to reduce the inflammatory or the immune response of the organism, and to

improve blood circulation lifetime, biodistribution, and bioavailability of the carried drugs and also to overcome the

self-defense mechanisms present in the bloodstream of the host organism. To achieve this requirement the hybrid

nanogels must be specifically designed. A very wide variety of architectures result by their decoration, modification,

and functionalization, , or they can be modified by conjugation with both organic  and inorganic  types of

nanoparticles and nanostructures. The morphologies of hybrid nanogels vary both with the particle type and the

assembly technique, each component being either core or shell, of different size and architecture . These

variable morphologies may be obtained by chemical reactions or through physical crosslinking based on hydrogen

bonds, ionic interactions, and other intermolecular bonds. Therefore, a proper surface decoration and its

biocompatibility, is a parameter capable of strongly influencing the biodistribution together with the dimensions, the

surface charge and the ligands interaction. Many stealth functionalizations exploit hydrophilic polymeric chains, as

polyethylene glycols or chitosan.

2.1.4. PEGylation
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PEGylation is a solution to increase the bioavailability of the decorated nanostructures and to extend the circulating

lifetime . After this modification a protein corona is formed around the antifouling PEG functionalization . It will

create a hindered zone around the nanoparticles and reduces the wrapping by plasma proteins and the

subsequent uptake by macrophages PEGylation depends on many factors such as hydrophilicity of the PEG

chains, molecular weight (MW) which vary from 2000 to 13,000 Da.

2.2. Processing Methods

Processing methods include : solution casting/drying, theta gelation, freezing or freezing/pressurizing, freeze

drying, emulsion freeze drying, inverse microemulsion polymerization technique, solution blowing, electrospinning,

coagulation treatment, CO -in-water emulsion, sol-gel method/thermal annealing, CO  bubbles template freeze

drying, high hydrostatic pressure [HHP] method, supercritical gel-drying. Other new synthesis methods include the

implementation of click chemistry reactions , photo-patterning, and rapid prototyping, 3D printing for the facile

production of hybrid hydrogels, self-assembly , the use of biological molecules and motifs to promote a

desired cellular outcome, and the tailoring of kinetics and transport behavior to obtain desired biomedical outcomes

. 3D bioprinting of hydrogels is performed in accordance with the native tissue architecture therefore it is

expected to result in a new generation of engineered tissues. Bakarich et al.  fabricated by a new 3D-printing

approach an interesting material with good mechanical performance based on κ-carrageenan and poly(oxyalkylene

amine) (Jeffamine) based ionic-covalent entanglement hydrogels. The carrageenan induced a fast gelation, a

structural integrity to the hydrogel system and thermoresponsiveness, while the epoxy-amine reaction to form

covalent bonding takes place an ambient temperature for covalent bond formation.

Hydrogels and their products can be obtained in a wide range of shapes as temporary or permanent shape, shape

memory, smart shape memory, quadruple-shape, sponges, soft or rigid, stretchable, films, sheets, bilayer,

micro/nanoparticles with defined shapes, ultrathin microcapsules, matrix, scaffolds, hollow cube, hemisphere,

pyramid, cylindrical, twisted bundle, patches for wound dressing, artificial ear, nose, and many others.

3. Properties

The specific physico-chemical key properties of the hybrid hydrogels are: remarkable thermodynamic stability,

elevated capacity of solubilization, mildness, density, swelling/deswelling, high-water content and permeability, low

surface tension and relative low viscosity, stiffness, mesh structure and size, responsiveness, biocompatibility and

biodegradability (so avoiding its accumulation in the organs), non-immunologic response and capability of

undergoing vigorous sterilization techniques , as well as their tunable viscoelasticity and structural similarity to

the ECM. Their properties can be fine-tuned through selection of the hydrogel components (chemical composition),

hydrophobicity/hydrophilicity ratio, and cross-linking strategy, crosslinking density etc. Hydrogels are commonly

considered as highly biocompatible, owing to the high-water content and also to the physico-chemical similarity

with the native ECM. Chemically cross-linked synthetic polymeric hydrogels have higher mechanical properties

compared to self-assembling (physically crosslinked) systems, thanks to the high molecular weight of polymer

[97] [98]
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materials, but they lack biological functionality, while self-assembling hydrogels, formed through physical cross-

links, allow minimally invasive implantation in the body.

3.1. Swelling

The swelling of hydrogels is a process occurring in three steps, namely: (a) diffusion of water molecules into

hydrogel network, (b) hydration of polymeric chains and their relaxation and (c) expansion of crosslinked polymeric

network. The primary and secondary bound water is uptaken by the network by its interaction with the polar and

hydrophobic sites, respectively and then the network is imbibed with additional water which is named free water.

Finally at an infinite dilution to a maximum, level equilibrium water content is reached. The determination of

swelling behavior is the main assay to establish the hydrogel quality, as it is also a means to evaluate other

properties as: crosslinking degree, mechanical properties, degradation rate, etc. Swelling properties of the stimuli

responsive hydrogels are significantly changed by the modification in parameters of the surrounding environment

(i.e., temperature, pressure, pH, solvent composition, ionic strength, electrical potential, etc.). The polymeric hybrid

hydrogels exhibit biodegradability and biocompatibility, high permeability, to oxygen, nutrients, and to water-soluble

metabolites, being promising carriers and for cells encapsulation. They resemble with natural soft tissues 

being very useful in regenerative medicine, for tissue scaffold or therapeutic transfer systems, promoting cell

attachment and proliferation .

3.2. Mechanical Properties

The mechanical properties can be varied and tuned by changing the crosslinking degree, or lowered by heating. To

seed osteoblast cells, it is necessary a more stiff material than in the case of adipocyte culture, as for this is also

requirement for the development of a heterogeneous prosthetic device, as substitute for the intervertebral disc. The

elastic nature of hydrated gels has been found to minimize irritation to the surrounding tissues after implantation.

3.3. Responsiveness

Generally, hydrogels have weak mechanical properties and a slow or delayed response to external stimuli. Novel

hydrogel designs substantially enhanced mechanical properties and by creating the superporous and comb-type

grafted hydrogels fast responses to external stimuli were obtained as also was done by development of self-

assembling hydrogels from hybrid graft copolymers with property-controlling protein domains, and genetically

engineered triblock copolymers containing hydrogels.

The low interfacial tension between the gel surface and body fluid minimizes protein adsorption and cell adhesion,

reducing the chances of negative immune reactions .

3.4. Porosity and Permeation

The average pore size, the pore size distribution, and the pore interconnections included together in the parameter

called « tortuosity » are important factors for a hydrogel matrix. They are influenced by the composition and the

[41][104]
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[105]
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crosslink density of the hydrogel polymer network. Pores can show different morphologies: they can be closed,

open as a blind end or interconnected, again divided in cavities and throats.

Net charge of the polyelectrolyte hydrogel is determined by the initial concentration of the cationic and/or anionic

monomer.

Crosslinking influences all the other properties of the hydrogels. By controlling the crosslinking degree, the

materials with tunable and optimized properties destined to different applications can be obtained .

The micro-/nanogels are valuable materials as drug-delivery carriers because they show high loading capacity,

good stability, and reversible volume change in response to environmental stimuli (such as pH, temperature, and

glucose level) .

4. Applications

Hydrogels remain the most appealing candidates for tissue engineering scaffolds. The development of hybrid

hydrogels constituted from different polymers is based on numerous resources and they are applied for

regenerative medicine, tissue engineering (including: bone regeneration , cartilage tissue, vascular

tissue, cardiac tissue, cardiovascular tissue, meniscus tissue, human prostate tissue, skin tissue/wound, and other

tissues), wound healing, artificial cornea, drug/gene delivery, cancer cells, nucleus pulposus bioelectronic

interfaces due to their structural similarity to the natural ECM, inherent biocompatibility, tunable viscoelasticity,

tunable physical and mechanical properties, and their ability to form scaffolds for different tissues, high-water

content and high permeability for oxygen and essential nutrients . Biomedical applications of hydrogels as the

first materials developed for uses inside the patient started from the decade of 70 s .

It is considered that the development of the hydrogels for medical applications known three steps . The first

generation of hydrogels is characterized by various crosslinking procedures involving the chemical modifications of

a monomer or polymer with an initiator to develop materials with high swelling and good mechanical properties.

The second generation of materials is that capable to respond to specific stimuli (temperature, pH, ionic strength,

different external fields or concentration of specific bioactive molecules etc.), known as smart hydrogels. Finally,

the research for the third generation of hydrogels was focused on the investigation and development of hybrid,

stereo complexed materials (e.g., PEG-PLA interaction) with a wide spectrum of tunable properties and trigger

stimuli . This last stage aimed to develop the so called “smart hydrogels” with a variety of possible

applications. Hybrid hydrogels based on both natural and synthetic polymers offer infinite possibility to cells

encapsulation, as matrices for repairing and regenerating a wide variety of tissues and organs , are capable of

responding to biological signals in vivo or remote triggers and other many possible applications in biomaterials,

biomedicine and nanomedicine .

Other important applications are  (Scheme 2): wound dressing/healing, treatment of severe burns, drug

delivery/controlled release, injectable hydrogels, vaccines, cancer treatment, autoimmune disease,

[106]
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neurodegenerative disease, anti-inflammatory, ophthalmology, etc.

Scheme 2. Biomedical applications of hydrid hydrogels based on natural and synthetic polymers.

Particularized examples of medical applications of hybrid hydrogels containing different   classes of natural

polymers as: homo and hetero polysaccharides, proteinsl, nucleic acids and lignin are described.

Some selective research studies have been summarized especially those from the last two decades, for the

preparation of natural polymers-containing hybrid hydrogels and their potential in a wide range of medical

applications. It was described both advantages and disadvantages of each hydrogel applied in different medical

applications. Desired hybrid hydrogels may be developed for targeted applications by making changes in

composition, use of specific biomolecules, antimicrobial agents, use of suitable cells, and selecting suitable

synthesis routes and processing techniques. The successful use of a polymeric hybrid hydrogel consists in creating

a three-dimensional micro-/nano environment that represents a synthetic ECM for the cells, which should provide
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biodegradability, biocompatibility, pore interconnectivity to assure the penetration and absorption of nutrient,

modulation of proliferation for successful reconstruction of organs, cell-adhesion and regeneration certain tissue. In

the most recent researches, injectable hydrogels and 3D-bioprinted hybrid hydrogels allow successful their

interaction with the cells of damaged tissues. The hybrid nano hydrogel materials are able to convert external

stimuli signals to heat, highly oxidative species etc., which are helpful for combinatorial therapies and theranostics.

By a simple hybridization of the components of the hybrid hydrogels smart multiresponsive materials can be

obtained by synergistic combination of the best properties of both components, useful toward applications in

nanomedicine which exhibit an excellent targetability, minimal side effects in treatments and diagnostic. The

industrial application of the new hybrid hydro/nanogels materials is in its first steps and it need more relevant

clinical data concerning their safety and efficacy in vivo.
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