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Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from human tissues or organs, such as

the bone marrow, adipose tissue, umbilical cord, lung, spleen, liver or kidney, while exosomes are crucial components that

account for the paracrine action of MSCs. They are extracellular vesicles with a lipid bilayer structure and an average

diameter of 100 nm, and they perform biological function by transferring bioactive molecules such as miRNAs, lncRNAs,

lipids and cytokines.
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1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from human tissues or organs, such as

the bone marrow, adipose tissue, umbilical cord, lung, spleen, liver or kidney . Despite being derived from multiple

sources, MSCs display similar biological phenotypes and functions . Because of their autocrine and paracrine actions,

MSCs have been shown to possess potency in repairing tissue damage . Critically, delivery of only a small population of

MSCs can result in accelerated damage repair in the host . In addition, exosomes are crucial components that

account for the paracrine action of MSCs . For example, they exchange genetic material across cells by

transferring bioactive molecules . Similar to other cellular exosomes, MSC-exosomes are extracellular vesicles with a

lipid bilayer structure and an average diameter of 100 nm . They carry bioactive molecules, including miRNAs,

lncRNAs, lipids and cytokines , thus providing a context for researching the biological functions of MSC-exosomes.

Treating diseases with MSC-exosomes has shown promise in the field of regenerative medicine, and numerous studies

exploring the therapeutic effects of MSC-exosomes on neurological, immunological and cardiovascular diseases have

been published . In summary, the benefits of delivering MSC-exosomes in disease models mainly include the

attenuation of inflammation, promotion of angiogenesis and improvement in the survival and proliferation of stem or

progenitor cells within injured tissues or organs . In fact, such benefits can be achieved with MSCs as well. Although it

has also been shown that MSCs can exert therapeutic effects on radiation damage, the therapeutic potential of MSC-

exosomes has not been widely explored in this field. Nevertheless, in a previous study, irradiated cells exhibited enhanced

uptake of exosomes because of an increase in the formation of the integrin and tetraspanin complex CD29/CD81 on the

cell surface , thus indicating the specific role of exosomes in mediating biological processes in injured cells. Moreover,

MSC-exosomes were found to protect against acute or chronic radiation damage via their miRNA cargo, suggesting that

irradiated cells might utilize MSC-exosomes to increase their resistance to ionizing irradiation . For example, a

study showed that exosomal miRNA-210 could elicit efficient DNA damage repair by controlling the transcriptional activity

of HIF-1, thus enhancing cellular radio-resistance . In this review, we explore the pro-regenerative properties of

MSC-exosomes in the field of radiation damage and aim to provide new insight into the management of radiation damage

by using MSC-exosomes.

2. Biological Features of MSC-Exosomes

MSCs are crucial sources of exosomes in humans. Consistent with other cell-derived exosomes, MSC-exosomes are

generated through a sequential process including the invagination of lysosomal microparticles and fusion and excretion

from parental cells . Lysosomal microparticles first invaginate their membranes to generate endosomes, which then

fuse with each other to form multivesicular bodies that contain intraluminal vesicles. Next, the outer membrane of the

mature multivesicular body fuses with the plasma membrane of a cell and is ultimately transported out, constituting an

exosome .

Exosomes consist of lipid bilayer membrane structures with diameters ranging from 40 nm to 160 nm (an average of 100

nm) . They express various markers, including CD9, CD81, CD63, TSG101, flotillin, ceramide, and Alix , and have a

density of 1.15–1.19 g/mL in sucrose gradients . MSC-exosomes contain at least 170 different miRNAs  and 304
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proteins , along with an indefinite number of DNAs, mRNAs and metabolites . Because they contain a large number

of bioactive molecules, MSC-exosomes have attracted great interest in the field of regenerative medicine. Accordingly,

numerous studies have attempted to assess whether the infusion of MSC-exosomes can serve as an alternative strategy

to repair tissue damage, and emerging results have mostly revealed that MSC-exosomes have therapeutic effects similar

to those of their parental MSCs . Moreover, MSC-exosomes have several advantages over MSCs. (i) MSC-exosomes

are long-lasting and can be stored at −80 °C without affecting their biological functions , whereas cryopreserved MSCs

exhibit impaired immunoregulatory and pro-regenerative properties compared with fresh MSCs . (ii) The membranes of

MSC-exosomes are enriched in sphingomyelin, cholesterol, ceramide and lipid raft proteins, enabling MSC-exosomes to

spread in vivo regardless of biological barriers, such as the blood-brain barrier , for example, even when they are

delivered via an intravenous injection, MSC-exosomes can be detected in injured neurons in the brain . (iii) Infusion of

MSC-exosomes elicits minimal immune rejection due to their complete lack of expression of major histocompatibility

complex (MHC) molecules , which prevents their rapid clearance by host immune cells. For instance, MSC-

exosomes were found to remain in a recipient for a significantly longer time than MSCs after infusion , indicating that

they can perform their biological functions in vivo for a relatively long time. (iv) Infusion of MSC-exosomes can avoid

several stem cell-associated challenges, such as the risk of spontaneous tumorigenesis induced by MSCs . (v) The

potential secretion of exosomes by MSCs can be impacted by various factors. For example, maintaining MSCs in a

physiological state in an in vitro culture system can impact their production of exosomes with a specific phenotype in

terms of biological activity . Notably, although incubating MSCs with an IFN-γ plus TNF-α mixture in vitro reduced their

proliferation, the production of exosomes was not adversely affected . Moreover, this process improved the

immunosuppressive function of the MSC-exosomes. This prompts speculation that exosomes with high bioactivity can be

purposefully obtained by preconditioning MSCs in vitro prior to injection to treat inflammatory diseases. Therefore,

determining the components of MSC-exosomes that are able to produce high therapeutic efficacy is particularly critical.

The miRNA and protein cargo contained in MSC-exosomes are effective in promoting damage repair. Moreover, they

jointly regulate the regenerative process in damaged tissue. In a colitis model, MSC-exosomes were revealed to reduce

macrophage-induced inflammation by transporting metallothionein-2, an upstream protein that blocks activation of the NF-

κB pathway . However, this anti-inflammatory effect of MSC-exosomes was not completely lost even when blocking

metallothionein-2 in vivo and in vitro , demonstrating that other components in MSC-exosomes also exert bioactive

effects in this process. Therefore, exosomal miRNA-146a in MSCs might alleviate experimental colitis by targeting the

TRAF6 and IRAK1 genes , preventing NF-κB activation along with the subsequent production of TNF-α and IL-6 .

Consistently, several other MSC-exosomal miRNAs such as miRNA-30b-3p , miRNA-223-3p , and miRNA-126 

  were found to be responsible for suppressing pro-inflammatory responses. They also exhibit potent effects in

promoting tissue regeneration and angiogenesis. Overall, we need to understand the mechanisms by which MSC-

exosomes repair tissue damage.

3. MSC-Exosomes in Repairing Radiation Damage: Perspective and
Challenges

With regard to radiation-induced damage, it has been revealed that MSCs play a crucial role in tissue damage treatment

and prevention. Moreover, the superior properties and improved safety of MSC-exosomes make them novel candidates

for curing radiation-induced damage. They exert therapeutic effects mainly by facilitating angiogenesis, promoting cellular

regeneration, and probably by enhancing the repair function through immunomodulatory effects. More importantly, there

are several methods that can be used to enhance the efficacy of remodeling damaged tissue. On the one hand,

exosomes secreted by MSCs with genetic modifications are a promising alternative treatment, such as exosomes derived

from SDF1-overexpressing MSCs for microvascular regeneration . On the other hand, MSCs can be pretreated in vitro

before exosomes are collected, such as with hypoxia-treated MSC-exosomes in ischemia-related disease . Last, but

equally important, the tropism of exosomes can be improved by increasing expression of specific receptors on the surface

of the original MSCs. Current studies on the treatment of radiation-induced damage by MSC-exosomes are mostly based

on the acute phase, whereas little work has been performed on the treatment of chronic radiation-induced damage by

MSC-exosomes. Notably, evidence suggests that MSC-exosomes reverse EMT of endometrial epithelial cells via the

TGF-β1/Smad pathway  and of tubular epithelial cells via enhanced tight junctions . In general, sustained EMT is a

critical mechanism that underlies the fibrotic pathology of tissue . Thus, it can be reasonably inferred that MSC-

exosome treatment has potential for preventing tissue fibrosis in the chronic phase of tissue damage. Therefore, despite

limited evidence of the repair role of MSC-exosomes in chronic radiation-induced damage, it is important that researchers

make further efforts to explore their therapeutic and underlying potential in chronic radiation-induced damage. This will

provide a new context for the future application of MSC-exosomes to treating chronic radiation damage (Figure 1).
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Figure 1. MSC-exosomes are capable of protecting against radiation-induced damage to hematopoietic and

nonhematopoietic systems. In hematopoietic reconstruction post irradiation, MSC-exosomes enhance hematopoietic cell

survival and proliferation by carrying functional molecules, such as the pro-regeneration miRNAs miRNA221, miRNA451

and miRNA654, the anti-apoptosis-related miRNAs miRNA210, miRNA106b and miRNA155, the hematopoiesis-related

cytokines G-CSF and IL-8, and the hematopoiesis-related growth factor VEGF. In addition, MSC-exosomes can protect

irradiated bone marrow MSCs from radiation-induced DNA and oxidative stress damage by activating the Wnt/β-catenin

signaling pathway. With regard to the non-hematopoietic system, MSC-exosomes reduce apoptosis of skin epidermal,

lung alveolar epithelium and intestinal epithelium cells, as MSC-exosomal miRNAs likely mediate repair of DNA double-

strand breaks in damaged cells. Oxidative stress reaction and DNA damage are the major processes in radiation damage.

MSC-exosomes can overcome these crucial events effectively, and have potential to suppress the development of acute

and chronic radiation damage from several aspects. MSC-exosomes also facilitate vascular endothelium proliferation

owing to their bioactive cargo molecules, such as PDGF, FGF and EGF.

In fact, there are several deficiencies with regard to managing diseases by using MSC-exosomes. (i) One concern is the

challenges due to the instability of contents of exosomes. For example, studies have shown that the amount of exosomal

miRNA cargo is influenced by the irradiation dose and pH value of the culture medium . The precise experimental

conditions for exosomes are more difficult to control compared to MSCs. (ii) Another concern is the lack of a uniform

standard for the purification and quantification of exosomes from conditioned media. Overall, it is difficult to determine the

equivalent dose of exosomes in dose-dependent experimental studies, which may lead to different conclusions as results

can be affected by exosome content and impurities. Therefore, it is appropriate to find an ideal method for constructing a

precise equivalent dose of exosomes for experimental purpose. Although the effects of MSC-exosomes in various disease

models have been clearly shown, the exact components and mechanisms of therapy are not entirely clear. miRNAs and

functional proteins may play major roles, yet the role of MSC-exosomes in tumor growth and metastasis remains

controversial. Previous studies have shown that MSC-exosomes can promote tumor growth in vivo , but a recent study

revealed that MSC-exosomes enhance radiotherapy-induced tumor cell death in primary and metastatic tumor foci

through synergistic and bystander effects . Urgent issues for cancer patients receiving radiotherapy include the

adjuvant antitumor effect and resistance to radiation damage. There is a great need for researchers to elaborate on the

role of MSC-exosomes in regenerative medicine for the treatment of radiation damage.
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